| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblabs.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | iblabs.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | iblabs.3 | ⊢ 𝐺  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) | 
						
							| 4 |  | iblabs.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 5 |  | iblabs.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 6 | 5 | iblrelem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 7 | 4 6 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 8 | 7 | simp1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 9 | 8 5 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 10 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 12 |  | rembl | ⊢ ℝ  ∈  dom  vol | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  dom  vol ) | 
						
							| 14 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 )  =  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 )  =  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 16 | 5 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 17 | 16 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( 𝐹 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 18 | 15 17 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 )  ∈  ℝ ) | 
						
							| 19 |  | eldifn | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝐴 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 21 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 )  =  0 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 )  =  0 ) | 
						
							| 23 | 14 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 24 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  abs : ℂ ⟶ ℝ ) | 
						
							| 26 | 25 16 | cofmpt | ⊢ ( 𝜑  →  ( abs  ∘  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) )  =  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 27 | 23 26 | eqtr4id | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) )  =  ( abs  ∘  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 28 | 16 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) | 
						
							| 29 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 30 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 31 |  | cncfss | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ℂ  ⊆  ℂ )  →  ( ℂ –cn→ ℝ )  ⊆  ( ℂ –cn→ ℂ ) ) | 
						
							| 32 | 29 30 31 | mp2an | ⊢ ( ℂ –cn→ ℝ )  ⊆  ( ℂ –cn→ ℂ ) | 
						
							| 33 |  | abscncf | ⊢ abs  ∈  ( ℂ –cn→ ℝ ) | 
						
							| 34 | 32 33 | sselii | ⊢ abs  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  abs  ∈  ( ℂ –cn→ ℂ ) ) | 
						
							| 36 |  | cncombf | ⊢ ( ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ  ∧  abs  ∈  ( ℂ –cn→ ℂ ) )  →  ( abs  ∘  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) )  ∈  MblFn ) | 
						
							| 37 | 8 28 35 36 | syl3anc | ⊢ ( 𝜑  →  ( abs  ∘  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝐵 ) ) )  ∈  MblFn ) | 
						
							| 38 | 27 37 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) )  ∈  MblFn ) | 
						
							| 39 | 11 13 18 22 38 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) )  ∈  MblFn ) | 
						
							| 40 | 3 39 | eqeltrid | ⊢ ( 𝜑  →  𝐺  ∈  MblFn ) | 
						
							| 41 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 43 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) | 
						
							| 44 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 45 |  | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 46 | 5 44 45 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 47 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ℝ )  →  0  ≤  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 48 | 44 5 47 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 49 |  | elrege0 | ⊢ ( if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 50 | 46 48 49 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 51 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 52 | 51 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,) +∞ ) ) | 
						
							| 53 | 50 52 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 54 | 43 53 | eqeltrid | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 56 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) | 
						
							| 57 | 5 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( 𝐹 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 58 |  | ifcl | ⊢ ( ( - ( 𝐹 ‘ 𝐵 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 59 | 57 44 58 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ℝ ) | 
						
							| 60 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  - ( 𝐹 ‘ 𝐵 )  ∈  ℝ )  →  0  ≤  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 61 | 44 57 60 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 62 |  | elrege0 | ⊢ ( if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 63 | 59 61 62 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 64 | 63 52 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 65 | 56 64 | eqeltrid | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 67 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 68 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 69 | 42 55 66 67 68 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) ) | 
						
							| 70 | 43 56 | oveq12i | ⊢ ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  ( if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) ) | 
						
							| 71 |  | max0add | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  ℝ  →  ( if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  +  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 72 | 5 71 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  +  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) | 
						
							| 73 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  =  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  =  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 75 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  =  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  =  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 77 | 74 76 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) )  =  ( if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  +  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 78 | 72 77 15 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) | 
						
							| 79 | 78 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) ) | 
						
							| 80 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 81 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  =  0 ) | 
						
							| 82 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  =  0 ) | 
						
							| 83 | 81 82 | oveq12d | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) )  =  ( 0  +  0 ) ) | 
						
							| 84 | 80 83 21 | 3eqtr4a | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) | 
						
							| 85 | 79 84 | pm2.61d1 | ⊢ ( 𝜑  →  ( if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 )  +  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) | 
						
							| 86 | 70 85 | eqtrid | ⊢ ( 𝜑  →  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) | 
						
							| 87 | 86 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) ) | 
						
							| 88 | 69 87 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ,  0 ) ) ) | 
						
							| 89 | 3 88 | eqtr4id | ⊢ ( 𝜑  →  𝐺  =  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) ) | 
						
							| 90 | 89 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  =  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) ) ) | 
						
							| 91 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 92 | 43 81 | eqtrid | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  =  0 ) | 
						
							| 93 | 20 92 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  =  0 ) | 
						
							| 94 |  | ibar | ⊢ ( 𝑥  ∈  𝐴  →  ( 0  ≤  ( 𝐹 ‘ 𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 95 | 94 | ifbid | ⊢ ( 𝑥  ∈  𝐴  →  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 96 | 95 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 97 | 5 8 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( 𝐹 ‘ 𝐵 ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 98 | 96 97 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 99 | 11 13 91 93 98 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 100 | 55 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 101 | 7 | simp2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 102 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 103 | 56 82 | eqtrid | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  =  0 ) | 
						
							| 104 | 20 103 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  =  0 ) | 
						
							| 105 |  | ibar | ⊢ ( 𝑥  ∈  𝐴  →  ( 0  ≤  - ( 𝐹 ‘ 𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ) ) | 
						
							| 106 | 105 | ifbid | ⊢ ( 𝑥  ∈  𝐴  →  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 107 | 106 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) | 
						
							| 108 | 5 8 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - ( 𝐹 ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 109 | 57 108 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( 𝐹 ‘ 𝐵 ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 110 | 107 109 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 111 | 11 13 102 104 110 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∈  MblFn ) | 
						
							| 112 | 66 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 113 | 7 | simp3d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 114 | 99 100 101 111 112 113 | itg2add | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) ) ) | 
						
							| 115 | 90 114 | eqtrd | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) ) ) | 
						
							| 116 | 101 113 | readdcld | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( 𝐹 ‘ 𝐵 ) ) ,  ( 𝐹 ‘ 𝐵 ) ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( 𝐹 ‘ 𝐵 ) ) ,  - ( 𝐹 ‘ 𝐵 ) ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 117 | 115 116 | eqeltrd | ⊢ ( 𝜑  →  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 118 | 40 117 | jca | ⊢ ( 𝜑  →  ( 𝐺  ∈  MblFn  ∧  ( ∫2 ‘ 𝐺 )  ∈  ℝ ) ) |