| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblabsr.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | iblabsr.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 3 |  | iblabsr.3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 4 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 ) | 
						
							| 5 | 2 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 6 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 8 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 9 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  𝑘  ∈  ℤ ) | 
						
							| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑘  ∈  ℤ ) | 
						
							| 11 |  | expclz | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  𝑘  ∈  ℤ )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 12 | 7 8 10 11 | mp3an12i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 13 |  | expne0i | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  𝑘  ∈  ℤ )  →  ( i ↑ 𝑘 )  ≠  0 ) | 
						
							| 14 | 7 8 10 13 | mp3an12i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( i ↑ 𝑘 )  ≠  0 ) | 
						
							| 15 | 6 12 14 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  /  ( i ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 16 | 15 | recld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 17 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 18 |  | ifcl | ⊢ ( ( ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ℝ ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ℝ ) | 
						
							| 20 | 19 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ℝ* ) | 
						
							| 21 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ∈  ℝ )  →  0  ≤  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 22 | 17 16 21 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 23 |  | elxrge0 | ⊢ ( if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ )  ↔  ( if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ℝ*  ∧  0  ≤  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 24 | 20 22 23 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 25 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 27 | 24 26 | ifclda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 | 4 27 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 30 | 29 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 31 | 5 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 32 | 5 | absge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( abs ‘ 𝐵 ) ) | 
						
							| 33 | 31 32 | iblpos | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 34 | 3 33 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( abs ‘ 𝐵 ) )  ∈  MblFn  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 35 | 34 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 37 | 31 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 38 |  | elxrge0 | ⊢ ( ( abs ‘ 𝐵 )  ∈  ( 0 [,] +∞ )  ↔  ( ( abs ‘ 𝐵 )  ∈  ℝ*  ∧  0  ≤  ( abs ‘ 𝐵 ) ) ) | 
						
							| 39 | 37 32 38 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 40 | 25 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 41 | 39 40 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 43 | 42 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 45 | 15 | releabsd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ≤  ( abs ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 46 | 6 12 14 | absdivd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ( abs ‘ 𝐵 )  /  ( abs ‘ ( i ↑ 𝑘 ) ) ) ) | 
						
							| 47 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 49 |  | absexp | ⊢ ( ( i  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ ( i ↑ 𝑘 ) )  =  ( ( abs ‘ i ) ↑ 𝑘 ) ) | 
						
							| 50 | 7 48 49 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( i ↑ 𝑘 ) )  =  ( ( abs ‘ i ) ↑ 𝑘 ) ) | 
						
							| 51 |  | absi | ⊢ ( abs ‘ i )  =  1 | 
						
							| 52 | 51 | oveq1i | ⊢ ( ( abs ‘ i ) ↑ 𝑘 )  =  ( 1 ↑ 𝑘 ) | 
						
							| 53 |  | 1exp | ⊢ ( 𝑘  ∈  ℤ  →  ( 1 ↑ 𝑘 )  =  1 ) | 
						
							| 54 | 10 53 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( 1 ↑ 𝑘 )  =  1 ) | 
						
							| 55 | 52 54 | eqtrid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ i ) ↑ 𝑘 )  =  1 ) | 
						
							| 56 | 50 55 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( i ↑ 𝑘 ) )  =  1 ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ 𝐵 )  /  ( abs ‘ ( i ↑ 𝑘 ) ) )  =  ( ( abs ‘ 𝐵 )  /  1 ) ) | 
						
							| 58 | 31 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 59 | 58 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 60 | 59 | div1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( abs ‘ 𝐵 )  /  1 )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 61 | 46 57 60 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 62 | 45 61 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ≤  ( abs ‘ 𝐵 ) ) | 
						
							| 63 | 6 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( abs ‘ 𝐵 ) ) | 
						
							| 64 |  | breq1 | ⊢ ( ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  →  ( ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ≤  ( abs ‘ 𝐵 )  ↔  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ≤  ( abs ‘ 𝐵 ) ) ) | 
						
							| 65 |  | breq1 | ⊢ ( 0  =  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  →  ( 0  ≤  ( abs ‘ 𝐵 )  ↔  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ≤  ( abs ‘ 𝐵 ) ) ) | 
						
							| 66 | 64 65 | ifboth | ⊢ ( ( ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  ≤  ( abs ‘ 𝐵 )  ∧  0  ≤  ( abs ‘ 𝐵 ) )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ≤  ( abs ‘ 𝐵 ) ) | 
						
							| 67 | 62 63 66 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ≤  ( abs ‘ 𝐵 ) ) | 
						
							| 68 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 70 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 72 | 67 69 71 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) | 
						
							| 73 | 72 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 74 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 75 | 74 | a1i | ⊢ ( ¬  𝑥  ∈  𝐴  →  0  ≤  0 ) | 
						
							| 76 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  0 ) | 
						
							| 77 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  =  0 ) | 
						
							| 78 | 75 76 77 | 3brtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) | 
						
							| 79 | 73 78 | pm2.61d1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) | 
						
							| 80 | 4 79 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) | 
						
							| 81 | 80 | ralrimivw | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) | 
						
							| 82 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 83 | 82 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ℝ  ∈  V ) | 
						
							| 84 | 37 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 85 | 84 63 38 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  ( abs ‘ 𝐵 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 86 | 85 26 | ifclda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 88 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 89 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 90 | 83 29 87 88 89 | ofrfval2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) )  ↔  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 91 | 81 90 | mpbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 92 |  | itg2le | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) ) | 
						
							| 93 | 30 44 91 92 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) ) | 
						
							| 94 |  | itg2lecl | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( abs ‘ 𝐵 ) ,  0 ) ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 95 | 30 36 93 94 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 96 | 95 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 97 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 98 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 99 | 97 98 1 | isibl2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 100 | 2 96 99 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) |