Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
itgadd.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
3 |
|
itgadd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
itgadd.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
5 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
6 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
7 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
8 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
9 |
5 6 7 8 1
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
10 |
2 9
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
11 |
10
|
simp1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
12 |
11 1
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
15 |
12 1 3 13 14
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ) |
16 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) |
17 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) |
18 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) |
19 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) |
20 |
16 17 18 19 3
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
21 |
4 20
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) ) |
22 |
21
|
simp1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
23 |
11 22
|
mbfadd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∘f + ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ∈ MblFn ) |
24 |
15 23
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ) |
25 |
11 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
26 |
25
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
27 |
22 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
28 |
27
|
recld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
29 |
25 27
|
readdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) |
30 |
25
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
31 |
11 30
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
32 |
31
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
33 |
27
|
ismbfcn2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
34 |
22 33
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) |
35 |
34
|
simpld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
36 |
10
|
simp2d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
37 |
36
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
38 |
21
|
simp2d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) |
39 |
38
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) , ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
40 |
26 28 29 32 35 37 39
|
ibladdlem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
41 |
26
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
42 |
28
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
43 |
29
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = - ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) ) |
44 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
45 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ 𝐶 ) ∈ ℂ ) |
46 |
44 45
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ( ℜ ‘ 𝐵 ) + ( ℜ ‘ 𝐶 ) ) = ( - ( ℜ ‘ 𝐵 ) + - ( ℜ ‘ 𝐶 ) ) ) |
47 |
43 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) = ( - ( ℜ ‘ 𝐵 ) + - ( ℜ ‘ 𝐶 ) ) ) |
48 |
26 32
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) |
49 |
28 35
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
50 |
36
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
51 |
38
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐶 ) ) , - ( ℜ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
52 |
41 42 47 48 49 50 51
|
ibladdlem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
53 |
40 52
|
jca |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ) |
54 |
25
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
55 |
27
|
imcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
56 |
25 27
|
imaddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) |
57 |
31
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
58 |
34
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
59 |
10
|
simp3d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
60 |
59
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
61 |
21
|
simp3d |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) ) |
62 |
61
|
simpld |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐶 ) ) , ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
63 |
54 55 56 57 58 60 62
|
ibladdlem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
64 |
54
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
65 |
55
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
66 |
56
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = - ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) ) |
67 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
68 |
55
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ 𝐶 ) ∈ ℂ ) |
69 |
67 68
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ( ℑ ‘ 𝐵 ) + ( ℑ ‘ 𝐶 ) ) = ( - ( ℑ ‘ 𝐵 ) + - ( ℑ ‘ 𝐶 ) ) ) |
70 |
66 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) = ( - ( ℑ ‘ 𝐵 ) + - ( ℑ ‘ 𝐶 ) ) ) |
71 |
54 57
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) |
72 |
55 58
|
mbfneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
73 |
59
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
74 |
61
|
simprd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐶 ) ) , - ( ℑ ‘ 𝐶 ) , 0 ) ) ) ∈ ℝ ) |
75 |
64 65 70 71 72 73 74
|
ibladdlem |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) |
76 |
63 75
|
jca |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ) |
77 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
78 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
79 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
80 |
|
eqid |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) |
81 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ V ) |
82 |
77 78 79 80 81
|
iblcnlem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℜ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) ) , - ( ℑ ‘ ( 𝐵 + 𝐶 ) ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
83 |
24 53 76 82
|
mpbir3and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∈ 𝐿1 ) |