| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgadd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | itgadd.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | itgadd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 4 |  | itgadd.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 5 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 9 | 5 6 7 8 1 | iblcnlem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ )  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) ) ) | 
						
							| 10 | 2 9 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ )  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 11 | 10 | simp1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 12 | 11 1 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) | 
						
							| 15 | 12 1 3 13 14 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∘f   +  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐶 ) ) ,  ( ℜ ‘ 𝐶 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐶 ) ) ,  ( ℜ ‘ 𝐶 ) ,  0 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐶 ) ) ,  - ( ℜ ‘ 𝐶 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐶 ) ) ,  - ( ℜ ‘ 𝐶 ) ,  0 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐶 ) ) ,  ( ℑ ‘ 𝐶 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐶 ) ) ,  ( ℑ ‘ 𝐶 ) ,  0 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐶 ) ) ,  - ( ℑ ‘ 𝐶 ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐶 ) ) ,  - ( ℑ ‘ 𝐶 ) ,  0 ) ) ) | 
						
							| 20 | 16 17 18 19 3 | iblcnlem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐶 ) ) ,  ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐶 ) ) ,  - ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ )  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐶 ) ) ,  ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐶 ) ) ,  - ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) ) ) ) | 
						
							| 21 | 4 20 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐶 ) ) ,  ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐶 ) ) ,  - ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ )  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐶 ) ) ,  ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐶 ) ) ,  - ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 22 | 21 | simp1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 23 | 11 22 | mbfadd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∘f   +  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  ∈  MblFn ) | 
						
							| 24 | 15 23 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝐶 ) )  ∈  MblFn ) | 
						
							| 25 | 11 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 26 | 25 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 27 | 22 3 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 28 | 27 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 29 | 25 27 | readdd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ℜ ‘ 𝐵 )  +  ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 30 | 25 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) ) ) | 
						
							| 31 | 11 30 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) ) | 
						
							| 32 | 31 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 33 | 27 | ismbfcn2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) )  ∈  MblFn ) ) ) | 
						
							| 34 | 22 33 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) )  ∈  MblFn  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) )  ∈  MblFn ) ) | 
						
							| 35 | 34 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐶 ) )  ∈  MblFn ) | 
						
							| 36 | 10 | simp2d | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 37 | 36 | simpld | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐵 ) ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 38 | 21 | simp2d | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐶 ) ) ,  ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐶 ) ) ,  - ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 39 | 38 | simpld | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ 𝐶 ) ) ,  ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 40 | 26 28 29 32 35 37 39 | ibladdlem | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 41 | 26 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 42 | 28 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 43 | 29 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ ( 𝐵  +  𝐶 ) )  =  - ( ( ℜ ‘ 𝐵 )  +  ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 44 | 26 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 45 | 28 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 46 | 44 45 | negdid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ( ℜ ‘ 𝐵 )  +  ( ℜ ‘ 𝐶 ) )  =  ( - ( ℜ ‘ 𝐵 )  +  - ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 47 | 43 46 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ ( 𝐵  +  𝐶 ) )  =  ( - ( ℜ ‘ 𝐵 )  +  - ( ℜ ‘ 𝐶 ) ) ) | 
						
							| 48 | 26 32 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - ( ℜ ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 49 | 28 35 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - ( ℜ ‘ 𝐶 ) )  ∈  MblFn ) | 
						
							| 50 | 36 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐵 ) ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 51 | 38 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ 𝐶 ) ) ,  - ( ℜ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 52 | 41 42 47 48 49 50 51 | ibladdlem | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 53 | 40 52 | jca | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 54 | 25 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 55 | 27 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 56 | 25 27 | imaddd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ℑ ‘ 𝐵 )  +  ( ℑ ‘ 𝐶 ) ) ) | 
						
							| 57 | 31 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 58 | 34 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐶 ) )  ∈  MblFn ) | 
						
							| 59 | 10 | simp3d | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 60 | 59 | simpld | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐵 ) ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 61 | 21 | simp3d | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐶 ) ) ,  ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐶 ) ) ,  - ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 62 | 61 | simpld | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ 𝐶 ) ) ,  ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 63 | 54 55 56 57 58 60 62 | ibladdlem | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 64 | 54 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 65 | 55 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ 𝐶 )  ∈  ℝ ) | 
						
							| 66 | 56 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ ( 𝐵  +  𝐶 ) )  =  - ( ( ℑ ‘ 𝐵 )  +  ( ℑ ‘ 𝐶 ) ) ) | 
						
							| 67 | 54 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 68 | 55 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 69 | 67 68 | negdid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ( ℑ ‘ 𝐵 )  +  ( ℑ ‘ 𝐶 ) )  =  ( - ( ℑ ‘ 𝐵 )  +  - ( ℑ ‘ 𝐶 ) ) ) | 
						
							| 70 | 66 69 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ ( 𝐵  +  𝐶 ) )  =  ( - ( ℑ ‘ 𝐵 )  +  - ( ℑ ‘ 𝐶 ) ) ) | 
						
							| 71 | 54 57 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - ( ℑ ‘ 𝐵 ) )  ∈  MblFn ) | 
						
							| 72 | 55 58 | mbfneg | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - ( ℑ ‘ 𝐶 ) )  ∈  MblFn ) | 
						
							| 73 | 59 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐵 ) ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 74 | 61 | simprd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ 𝐶 ) ) ,  - ( ℑ ‘ 𝐶 ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 75 | 64 65 70 71 72 73 74 | ibladdlem | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 76 | 63 75 | jca | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ ) ) | 
						
							| 77 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) ) | 
						
							| 78 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) ) | 
						
							| 79 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) ) | 
						
							| 80 |  | eqid | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) ) | 
						
							| 81 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +  𝐶 )  ∈  V ) | 
						
							| 82 | 77 78 79 80 81 | iblcnlem | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝐶 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝐶 ) )  ∈  MblFn  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℜ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ )  ∧  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ) ,  - ( ℑ ‘ ( 𝐵  +  𝐶 ) ) ,  0 ) ) )  ∈  ℝ ) ) ) ) | 
						
							| 83 | 24 53 76 82 | mpbir3and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  +  𝐶 ) )  ∈  𝐿1 ) |