| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ibladd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | ibladd.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 3 |  | ibladd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐷  =  ( 𝐵  +  𝐶 ) ) | 
						
							| 4 |  | ibladd.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 5 |  | ibladd.5 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 6 |  | ibladd.6 | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 7 |  | ibladd.7 | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 8 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 ) | 
						
							| 9 | 1 2 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +  𝐶 )  ∈  ℝ ) | 
						
							| 10 | 3 9 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐷  ∈  ℝ ) | 
						
							| 11 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 12 |  | ifcl | ⊢ ( ( 𝐷  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ∈  ℝ ) | 
						
							| 13 | 10 11 12 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ∈  ℝ ) | 
						
							| 14 | 13 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ∈  ℝ* ) | 
						
							| 15 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐷  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ) | 
						
							| 16 | 11 10 15 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ) | 
						
							| 17 |  | elxrge0 | ⊢ ( if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ∈  ( 0 [,] +∞ )  ↔  ( if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ∈  ℝ*  ∧  0  ≤  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ) ) | 
						
							| 18 | 14 16 17 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 19 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,] +∞ ) ) | 
						
							| 21 | 18 20 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 23 | 8 22 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 24 | 23 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 25 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 27 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 ) | 
						
							| 28 |  | ifcl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 29 | 1 11 28 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 30 | 11 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 31 | 29 30 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  ∈  ℝ ) | 
						
							| 32 | 27 31 | eqeltrid | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 34 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 ) | 
						
							| 35 |  | ifcl | ⊢ ( ( 𝐶  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 36 | 2 11 35 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 37 | 36 30 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 )  ∈  ℝ ) | 
						
							| 38 | 34 37 | eqeltrid | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 40 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) ) | 
						
							| 41 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) | 
						
							| 42 | 26 33 39 40 41 | offval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) ) | 
						
							| 43 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 )  =  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 44 |  | ibar | ⊢ ( 𝑥  ∈  𝐴  →  ( 0  ≤  𝐵  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ) ) | 
						
							| 45 | 44 | ifbid | ⊢ ( 𝑥  ∈  𝐴  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) | 
						
							| 46 |  | ibar | ⊢ ( 𝑥  ∈  𝐴  →  ( 0  ≤  𝐶  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ) ) | 
						
							| 47 | 46 | ifbid | ⊢ ( 𝑥  ∈  𝐴  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) | 
						
							| 48 | 45 47 | oveq12d | ⊢ ( 𝑥  ∈  𝐴  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  =  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) | 
						
							| 49 | 43 48 | eqtr2d | ⊢ ( 𝑥  ∈  𝐴  →  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 50 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 51 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 )  →  𝑥  ∈  𝐴 ) | 
						
							| 52 | 51 | con3i | ⊢ ( ¬  𝑥  ∈  𝐴  →  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ) | 
						
							| 53 | 52 | iffalsed | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  =  0 ) | 
						
							| 54 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 )  →  𝑥  ∈  𝐴 ) | 
						
							| 55 | 54 | con3i | ⊢ ( ¬  𝑥  ∈  𝐴  →  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ) | 
						
							| 56 | 55 | iffalsed | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  =  0 ) | 
						
							| 57 | 53 56 | oveq12d | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  =  ( 0  +  0 ) ) | 
						
							| 58 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 )  =  0 ) | 
						
							| 59 | 50 57 58 | 3eqtr4a | ⊢ ( ¬  𝑥  ∈  𝐴  →  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 60 | 49 59 | pm2.61i | ⊢ ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  =  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) | 
						
							| 61 | 60 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  ( if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  +  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 62 | 42 61 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) | 
						
							| 63 | 62 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) ) | 
						
							| 64 | 4 1 | mbfdm2 | ⊢ ( 𝜑  →  𝐴  ∈  dom  vol ) | 
						
							| 65 |  | mblss | ⊢ ( 𝐴  ∈  dom  vol  →  𝐴  ⊆  ℝ ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 67 |  | rembl | ⊢ ℝ  ∈  dom  vol | 
						
							| 68 | 67 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  dom  vol ) | 
						
							| 69 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ∈  ℝ ) | 
						
							| 70 |  | eldifn | ⊢ ( 𝑥  ∈  ( ℝ  ∖  𝐴 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 72 | 71 | intnanrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ) | 
						
							| 73 | 72 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  =  0 ) | 
						
							| 74 | 45 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) | 
						
							| 75 | 1 4 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 76 | 74 75 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 77 | 66 68 69 73 76 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∈  MblFn ) | 
						
							| 78 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 79 | 11 1 78 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 80 |  | elrege0 | ⊢ ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) ) | 
						
							| 81 | 29 79 80 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 82 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 83 | 82 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝑥  ∈  𝐴 )  →  0  ∈  ( 0 [,) +∞ ) ) | 
						
							| 84 | 81 83 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 85 | 27 84 | eqeltrid | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 87 | 86 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 88 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  ∈  ℝ ) | 
						
							| 89 | 71 56 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ℝ  ∖  𝐴 ) )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  =  0 ) | 
						
							| 90 | 47 | mpteq2ia | ⊢ ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) | 
						
							| 91 | 2 5 | mbfpos | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 92 | 90 91 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 93 | 66 68 88 89 92 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) )  ∈  MblFn ) | 
						
							| 94 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 95 | 11 2 94 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 96 |  | elrege0 | ⊢ ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ( 0 [,) +∞ )  ↔  ( if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 97 | 36 95 96 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐶 ,  𝐶 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 98 | 97 83 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 99 | 34 98 | eqeltrid | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 101 | 100 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 102 | 77 87 6 93 101 7 | itg2add | ⊢ ( 𝜑  →  ( ∫2 ‘ ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) )  ∘f   +  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) ) ) | 
						
							| 103 | 63 102 | eqtr3d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) )  =  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) ) ) | 
						
							| 104 | 6 7 | readdcld | ⊢ ( 𝜑  →  ( ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐵 ) ,  𝐵 ,  0 ) ) )  +  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐶 ) ,  𝐶 ,  0 ) ) ) )  ∈  ℝ ) | 
						
							| 105 | 103 104 | eqeltrd | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 106 | 29 36 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  ℝ ) | 
						
							| 107 | 106 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  ℝ* ) | 
						
							| 108 | 29 36 79 95 | addge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 109 |  | elxrge0 | ⊢ ( ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  ( 0 [,] +∞ )  ↔  ( ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  ℝ*  ∧  0  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 110 | 107 108 109 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 111 | 110 20 | ifclda | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 113 | 112 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 114 |  | max2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 115 | 11 1 114 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ≤  if ( 0  ≤  𝐵 ,  𝐵 ,  0 ) ) | 
						
							| 116 |  | max2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐶  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 117 | 11 2 116 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ≤  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) | 
						
							| 118 | 1 2 29 36 115 117 | le2addd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  +  𝐶 )  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 119 | 3 118 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐷  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 120 |  | breq1 | ⊢ ( 𝐷  =  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  →  ( 𝐷  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ↔  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 121 |  | breq1 | ⊢ ( 0  =  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  →  ( 0  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ↔  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) ) | 
						
							| 122 | 120 121 | ifboth | ⊢ ( ( 𝐷  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) )  ∧  0  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) )  →  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 123 | 119 108 122 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝐷 ,  𝐷 ,  0 )  ≤  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 124 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  =  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ) | 
						
							| 125 | 124 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  =  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ) | 
						
							| 126 | 43 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 )  =  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ) | 
						
							| 127 | 123 125 126 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 128 | 127 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) | 
						
							| 129 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 130 | 129 | a1i | ⊢ ( ¬  𝑥  ∈  𝐴  →  0  ≤  0 ) | 
						
							| 131 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  =  0 ) | 
						
							| 132 | 130 131 58 | 3brtr4d | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 133 | 128 132 | pm2.61d1 | ⊢ ( 𝜑  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  𝐷 ,  𝐷 ,  0 ) ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 134 | 8 133 | eqbrtrid | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 135 | 134 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) | 
						
							| 136 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) ) | 
						
							| 137 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) | 
						
							| 138 | 26 23 112 136 137 | ofrfval2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) )  ↔  ∀ 𝑥  ∈  ℝ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 )  ≤  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) | 
						
							| 139 | 135 138 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) | 
						
							| 140 |  | itg2le | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) )  ∘r   ≤  ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) ) | 
						
							| 141 | 24 113 139 140 | syl3anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) ) | 
						
							| 142 |  | itg2lecl | ⊢ ( ( ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) : ℝ ⟶ ( 0 [,] +∞ )  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) )  ∈  ℝ  ∧  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) )  ≤  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( 𝑥  ∈  𝐴 ,  ( if ( 0  ≤  𝐵 ,  𝐵 ,  0 )  +  if ( 0  ≤  𝐶 ,  𝐶 ,  0 ) ) ,  0 ) ) ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) )  ∈  ℝ ) | 
						
							| 143 | 24 105 141 142 | syl3anc | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  𝐷 ) ,  𝐷 ,  0 ) ) )  ∈  ℝ ) |