Step |
Hyp |
Ref |
Expression |
1 |
|
ibladd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
2 |
|
ibladd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
3 |
|
ibladd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 = ( 𝐵 + 𝐶 ) ) |
4 |
|
ibladd.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
5 |
|
ibladd.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
6 |
|
ibladd.6 |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ) |
7 |
|
ibladd.7 |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ) |
8 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) |
9 |
1 2
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
10 |
3 9
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ ℝ ) |
11 |
|
0re |
⊢ 0 ∈ ℝ |
12 |
|
ifcl |
⊢ ( ( 𝐷 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ ) |
13 |
10 11 12
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ ) |
14 |
13
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ* ) |
15 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
16 |
11 10 15
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
17 |
|
elxrge0 |
⊢ ( if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ( 0 [,] +∞ ) ↔ ( if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) ) |
18 |
14 16 17
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ( 0 [,] +∞ ) ) |
19 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
21 |
18 20
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
23 |
8 22
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ∈ ( 0 [,] +∞ ) ) |
24 |
23
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
25 |
|
reex |
⊢ ℝ ∈ V |
26 |
25
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
27 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) |
28 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
29 |
1 11 28
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
30 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) |
31 |
29 30
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ∈ ℝ ) |
32 |
27 31
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ℝ ) |
34 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) |
35 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
36 |
2 11 35
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
37 |
36 30
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ∈ ℝ ) |
38 |
34 37
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ℝ ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ℝ ) |
40 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) |
41 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
42 |
26 33 39 40 41
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) |
43 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
44 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
45 |
44
|
ifbid |
⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) |
46 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ 𝐶 ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
47 |
46
|
ifbid |
⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
48 |
45 47
|
oveq12d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
49 |
43 48
|
eqtr2d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
50 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
51 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
52 |
51
|
con3i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
53 |
52
|
iffalsed |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = 0 ) |
54 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
55 |
54
|
con3i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) |
56 |
55
|
iffalsed |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = 0 ) |
57 |
53 56
|
oveq12d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = ( 0 + 0 ) ) |
58 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) = 0 ) |
59 |
50 57 58
|
3eqtr4a |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
60 |
49 59
|
pm2.61i |
⊢ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) |
61 |
60
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
62 |
42 61
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
63 |
62
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) |
64 |
4 1
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
65 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
66 |
64 65
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
67 |
|
rembl |
⊢ ℝ ∈ dom vol |
68 |
67
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
69 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ℝ ) |
70 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
72 |
71
|
intnanrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
73 |
72
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = 0 ) |
74 |
45
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) |
75 |
1 4
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
76 |
74 75
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∈ MblFn ) |
77 |
66 68 69 73 76
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∈ MblFn ) |
78 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
79 |
11 1 78
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
80 |
|
elrege0 |
⊢ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
81 |
29 79 80
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
82 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
84 |
81 83
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
85 |
27 84
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
87 |
86
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
88 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ℝ ) |
89 |
71 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = 0 ) |
90 |
47
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
91 |
2 5
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ MblFn ) |
92 |
90 91
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ∈ MblFn ) |
93 |
66 68 88 89 92
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ∈ MblFn ) |
94 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
95 |
11 2 94
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
96 |
|
elrege0 |
⊢ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
97 |
36 95 96
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
98 |
97 83
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
99 |
34 98
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
101 |
100
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
102 |
77 87 6 93 101 7
|
itg2add |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) ) |
103 |
63 102
|
eqtr3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) ) |
104 |
6 7
|
readdcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) ∈ ℝ ) |
105 |
103 104
|
eqeltrd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ∈ ℝ ) |
106 |
29 36
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
107 |
106
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ* ) |
108 |
29 36 79 95
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
109 |
|
elxrge0 |
⊢ ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ* ∧ 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
110 |
107 108 109
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ( 0 [,] +∞ ) ) |
111 |
110 20
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
113 |
112
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
114 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
115 |
11 1 114
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
116 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
117 |
11 2 116
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
118 |
1 2 29 36 115 117
|
le2addd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
119 |
3 118
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
120 |
|
breq1 |
⊢ ( 𝐷 = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) → ( 𝐷 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ↔ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
121 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) → ( 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ↔ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
122 |
120 121
|
ifboth |
⊢ ( ( 𝐷 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∧ 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
123 |
119 108 122
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
124 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
126 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
127 |
123 125 126
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
128 |
127
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
129 |
|
0le0 |
⊢ 0 ≤ 0 |
130 |
129
|
a1i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
131 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) = 0 ) |
132 |
130 131 58
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
133 |
128 132
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
134 |
8 133
|
eqbrtrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
135 |
134
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
136 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) |
137 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
138 |
26 23 112 136 137
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
139 |
135 138
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
140 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) |
141 |
24 113 139 140
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) |
142 |
|
itg2lecl |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ∈ ℝ ) |
143 |
24 105 141 142
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ∈ ℝ ) |