| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							iblcncfioo.a | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							iblcncfioo.b | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							iblcncfioo.f | 
							⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 4 | 
							
								
							 | 
							iblcncfioo.l | 
							⊢ ( 𝜑  →  𝐿  ∈  ( 𝐹  limℂ  𝐵 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							iblcncfioo.r | 
							⊢ ( 𝜑  →  𝑅  ∈  ( 𝐹  limℂ  𝐴 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							cncff | 
							⊢ ( 𝐹  ∈  ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ )  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ )  | 
						
						
							| 8 | 
							
								7
							 | 
							feqmptd | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 10 | 
							
								
							 | 
							eliooord | 
							⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simpld | 
							⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  𝐴  <  𝑥 )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐴  <  𝑥 )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							gtned | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  ≠  𝐴 )  | 
						
						
							| 14 | 
							
								13
							 | 
							neneqd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ¬  𝑥  =  𝐴 )  | 
						
						
							| 15 | 
							
								14
							 | 
							iffalsed | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							elioore | 
							⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 18 | 
							
								10
							 | 
							simprd | 
							⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  →  𝑥  <  𝐵 )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  <  𝐵 )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							ltned | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝑥  ≠  𝐵 )  | 
						
						
							| 21 | 
							
								20
							 | 
							neneqd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ¬  𝑥  =  𝐵 )  | 
						
						
							| 22 | 
							
								21
							 | 
							iffalsed | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 23 | 
							
								15 22
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eqcomd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  =  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 26 | 
							
								8 25
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							ioossicc | 
							⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 )  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							ioombl | 
							⊢ ( 𝐴 (,) 𝐵 )  ∈  dom  vol  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ∈  dom  vol )  | 
						
						
							| 31 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑥  =  𝐴  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝑅 )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝑅 )  | 
						
						
							| 33 | 
							
								
							 | 
							limccl | 
							⊢ ( 𝐹  limℂ  𝐴 )  ⊆  ℂ  | 
						
						
							| 34 | 
							
								33 5
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝑅  ∈  ℂ )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  𝑅  ∈  ℂ )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 38 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  𝑥  =  𝐴  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑥  =  𝐵  →  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) )  =  𝐿 )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) )  =  𝐿 )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  =  𝐿 )  | 
						
						
							| 43 | 
							
								
							 | 
							limccl | 
							⊢ ( 𝐹  limℂ  𝐵 )  ⊆  ℂ  | 
						
						
							| 44 | 
							
								43 4
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝐿  ∈  ℂ )  | 
						
						
							| 45 | 
							
								44
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  𝐿  ∈  ℂ )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 48 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝜑 )  | 
						
						
							| 49 | 
							
								1
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ* )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝐴  ∈  ℝ* )  | 
						
						
							| 51 | 
							
								2
							 | 
							rexrd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ* )  | 
						
						
							| 52 | 
							
								48 51
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 53 | 
							
								
							 | 
							eliccxr | 
							⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  →  𝑥  ∈  ℝ* )  | 
						
						
							| 54 | 
							
								53
							 | 
							ad3antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  ∈  ℝ* )  | 
						
						
							| 55 | 
							
								50 52 54
							 | 
							3jca | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑥  ∈  ℝ* ) )  | 
						
						
							| 56 | 
							
								1
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 57 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℝ )  | 
						
						
							| 58 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ )  | 
						
						
							| 59 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							eliccre | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 61 | 
							
								57 58 59 60
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝑥  ∈  ℝ )  | 
						
						
							| 63 | 
							
								1 2
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) )  | 
						
						
							| 65 | 
							
								
							 | 
							elicc2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) )  | 
						
						
							| 67 | 
							
								59 66
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							simp2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝑥 )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐴  ≤  𝑥 )  | 
						
						
							| 70 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝑥  ≠  𝐴  ↔  ¬  𝑥  =  𝐴 )  | 
						
						
							| 71 | 
							
								70
							 | 
							biimpri | 
							⊢ ( ¬  𝑥  =  𝐴  →  𝑥  ≠  𝐴 )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝑥  ≠  𝐴 )  | 
						
						
							| 73 | 
							
								56 62 69 72
							 | 
							leneltd | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  𝐴  <  𝑥 )  | 
						
						
							| 74 | 
							
								73
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝐴  <  𝑥 )  | 
						
						
							| 75 | 
							
								
							 | 
							nesym | 
							⊢ ( 𝐵  ≠  𝑥  ↔  ¬  𝑥  =  𝐵 )  | 
						
						
							| 76 | 
							
								75
							 | 
							biimpri | 
							⊢ ( ¬  𝑥  =  𝐵  →  𝐵  ≠  𝑥 )  | 
						
						
							| 77 | 
							
								76
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝐵  ≠  𝑥 )  | 
						
						
							| 78 | 
							
								67
							 | 
							simp3d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ≤  𝐵 )  | 
						
						
							| 79 | 
							
								61 58 78
							 | 
							3jca | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ≤  𝐵 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  ( 𝑥  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ≤  𝐵 ) )  | 
						
						
							| 81 | 
							
								
							 | 
							leltne | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ≤  𝐵 )  →  ( 𝑥  <  𝐵  ↔  𝐵  ≠  𝑥 ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  ( 𝑥  <  𝐵  ↔  𝐵  ≠  𝑥 ) )  | 
						
						
							| 83 | 
							
								77 82
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  <  𝐵 )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  <  𝐵 )  | 
						
						
							| 85 | 
							
								74 84
							 | 
							jca | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							elioo3g | 
							⊢ ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝑥  ∈  ℝ* )  ∧  ( 𝐴  <  𝑥  ∧  𝑥  <  𝐵 ) ) )  | 
						
						
							| 87 | 
							
								55 85 86
							 | 
							sylanbrc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  | 
						
						
							| 88 | 
							
								48 87
							 | 
							jca | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) ) )  | 
						
						
							| 89 | 
							
								7
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ )  | 
						
						
							| 90 | 
							
								23 89
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 (,) 𝐵 ) )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 91 | 
							
								88 90
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  ∧  ¬  𝑥  =  𝐵 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 92 | 
							
								47 91
							 | 
							pm2.61dan | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ∧  ¬  𝑥  =  𝐴 )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 93 | 
							
								37 92
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℂ )  | 
						
						
							| 94 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 95 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  | 
						
						
							| 96 | 
							
								94 95 1 2 3 4 5
							 | 
							cncfiooicc | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  | 
						
						
							| 97 | 
							
								
							 | 
							cniccibl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  ∈  𝐿1 )  | 
						
						
							| 98 | 
							
								1 2 96 97
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  ∈  𝐿1 )  | 
						
						
							| 99 | 
							
								28 30 93 98
							 | 
							iblss | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 (,) 𝐵 )  ↦  if ( 𝑥  =  𝐴 ,  𝑅 ,  if ( 𝑥  =  𝐵 ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) )  ∈  𝐿1 )  | 
						
						
							| 100 | 
							
								26 99
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝐹  ∈  𝐿1 )  |