Metamath Proof Explorer


Theorem iblconstmpt

Description: A constant function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion iblconstmpt ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 fconstmpt ( 𝐴 × { 𝐵 } ) = ( 𝑥𝐴𝐵 )
2 iblconst ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ 𝐿1 )
3 1 2 eqeltrrid ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )