| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbf0 | ⊢ ∅  ∈  MblFn | 
						
							| 2 |  | fconstmpt | ⊢ ( ℝ  ×  { 0 } )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 3 | 2 | eqcomi | ⊢ ( 𝑥  ∈  ℝ  ↦  0 )  =  ( ℝ  ×  { 0 } ) | 
						
							| 4 | 3 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  0 ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) ) | 
						
							| 5 |  | itg20 | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 6 | 4 5 | eqtri | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  0 ) )  =  0 | 
						
							| 7 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 8 | 6 7 | eqeltri | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  0 ) )  ∈  ℝ | 
						
							| 9 | 8 | rgenw | ⊢ ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  0 ) )  ∈  ℝ | 
						
							| 10 |  | noel | ⊢ ¬  𝑥  ∈  ∅ | 
						
							| 11 | 10 | intnanr | ⊢ ¬  ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 12 | 11 | iffalsei | ⊢ if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  0 | 
						
							| 13 | 12 | eqcomi | ⊢ 0  =  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ )  →  0  =  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 15 | 14 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ  ↦  0 )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 16 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ∅ )  →  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 0  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 17 |  | dm0 | ⊢ dom  ∅  =  ∅ | 
						
							| 18 | 17 | a1i | ⊢ ( ⊤  →  dom  ∅  =  ∅ ) | 
						
							| 19 | 10 | intnan | ⊢ ¬  ( ⊤  ∧  𝑥  ∈  ∅ ) | 
						
							| 20 | 19 | pm2.21i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ∅ )  →  ( ∅ ‘ 𝑥 )  =  0 ) | 
						
							| 21 | 15 16 18 20 | isibl | ⊢ ( ⊤  →  ( ∅  ∈  𝐿1  ↔  ( ∅  ∈  MblFn  ∧  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  0 ) )  ∈  ℝ ) ) ) | 
						
							| 22 | 21 | mptru | ⊢ ( ∅  ∈  𝐿1  ↔  ( ∅  ∈  MblFn  ∧  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  0 ) )  ∈  ℝ ) ) | 
						
							| 23 | 1 9 22 | mpbir2an | ⊢ ∅  ∈  𝐿1 |