Step |
Hyp |
Ref |
Expression |
1 |
|
mbf0 |
⊢ ∅ ∈ MblFn |
2 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
3 |
2
|
eqcomi |
⊢ ( 𝑥 ∈ ℝ ↦ 0 ) = ( ℝ × { 0 } ) |
4 |
3
|
fveq2i |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) |
5 |
|
itg20 |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |
6 |
4 5
|
eqtri |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) = 0 |
7 |
|
0re |
⊢ 0 ∈ ℝ |
8 |
6 7
|
eqeltri |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ |
9 |
8
|
rgenw |
⊢ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ |
10 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
11 |
10
|
intnanr |
⊢ ¬ ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) |
12 |
11
|
iffalsei |
⊢ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) = 0 |
13 |
12
|
eqcomi |
⊢ 0 = if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) |
14 |
13
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 0 = if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
15 |
14
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ ↦ 0 ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ∅ ∧ 0 ≤ ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
16 |
|
eqidd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ∅ ) → ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 0 / ( i ↑ 𝑘 ) ) ) ) |
17 |
|
dm0 |
⊢ dom ∅ = ∅ |
18 |
17
|
a1i |
⊢ ( ⊤ → dom ∅ = ∅ ) |
19 |
10
|
intnan |
⊢ ¬ ( ⊤ ∧ 𝑥 ∈ ∅ ) |
20 |
19
|
pm2.21i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ∅ ) → ( ∅ ‘ 𝑥 ) = 0 ) |
21 |
15 16 18 20
|
isibl |
⊢ ( ⊤ → ( ∅ ∈ 𝐿1 ↔ ( ∅ ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ ) ) ) |
22 |
21
|
mptru |
⊢ ( ∅ ∈ 𝐿1 ↔ ( ∅ ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 0 ) ) ∈ ℝ ) ) |
23 |
1 9 22
|
mpbir2an |
⊢ ∅ ∈ 𝐿1 |