Metamath Proof Explorer


Theorem ibliooicc

Description: If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ibliooicc.1 ( 𝜑𝐴 ∈ ℝ )
ibliooicc.2 ( 𝜑𝐵 ∈ ℝ )
ibliooicc.3 ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 )
ibliooicc.4 ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ )
Assertion ibliooicc ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 ibliooicc.1 ( 𝜑𝐴 ∈ ℝ )
2 ibliooicc.2 ( 𝜑𝐵 ∈ ℝ )
3 ibliooicc.3 ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 )
4 ibliooicc.4 ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ )
5 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
6 5 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) )
7 1 2 iccssred ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
8 1 rexrd ( 𝜑𝐴 ∈ ℝ* )
9 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
10 icc0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
11 8 9 10 syl2anc ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
12 11 biimpar ( ( 𝜑𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ )
13 12 difeq1d ( ( 𝜑𝐵 < 𝐴 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( ∅ ∖ ( 𝐴 (,) 𝐵 ) ) )
14 0dif ( ∅ ∖ ( 𝐴 (,) 𝐵 ) ) = ∅
15 0ss ∅ ⊆ { 𝐴 , 𝐵 }
16 14 15 eqsstri ( ∅ ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 }
17 13 16 eqsstrdi ( ( 𝜑𝐵 < 𝐴 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } )
18 ssid ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) )
19 8 adantr ( ( 𝜑𝐴𝐵 ) → 𝐴 ∈ ℝ* )
20 9 adantr ( ( 𝜑𝐴𝐵 ) → 𝐵 ∈ ℝ* )
21 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
22 iccdifioo ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } )
23 19 20 21 22 syl3anc ( ( 𝜑𝐴𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = { 𝐴 , 𝐵 } )
24 18 23 sseqtrid ( ( 𝜑𝐴𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } )
25 17 24 2 1 ltlecasei ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } )
26 prssi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { 𝐴 , 𝐵 } ⊆ ℝ )
27 1 2 26 syl2anc ( 𝜑 → { 𝐴 , 𝐵 } ⊆ ℝ )
28 prfi { 𝐴 , 𝐵 } ∈ Fin
29 ovolfi ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ { 𝐴 , 𝐵 } ⊆ ℝ ) → ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 )
30 28 27 29 sylancr ( 𝜑 → ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 )
31 ovolssnul ( ( ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝐵 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 ) → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ) = 0 )
32 25 27 30 31 syl3anc ( 𝜑 → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ) = 0 )
33 6 7 32 4 itgss3 ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ) ∧ ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 ) )
34 33 simpld ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ) )
35 3 34 mpbid ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 )