Step |
Hyp |
Ref |
Expression |
1 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
2 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
3 |
|
ioombl |
⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
5 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
6 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
7 |
5 6
|
sstrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
8 |
7
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
9 |
8
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
10 |
9
|
sincld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
11 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
12 |
10 11
|
expcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℂ ) |
13 |
|
ibliccsinexp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) |
14 |
2 4 12 13
|
iblss |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) |