Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ibllem.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
| Assertion | ibllem | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibllem.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
| 2 | 1 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ 0 ≤ 𝐶 ) ) |
| 3 | 2 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
| 4 | 3 | ifbid | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐵 , 0 ) ) |
| 5 | 1 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) → 𝐵 = 𝐶 ) |
| 6 | 5 | ifeq1da | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
| 7 | 4 6 | eqtrd | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |