Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | iblmbf | ⊢ ( 𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ibl | ⊢ 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } | |
2 | 1 | ssrab3 | ⊢ 𝐿1 ⊆ MblFn |
3 | 2 | sseli | ⊢ ( 𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn ) |