| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgcnval.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | itgcnval.2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1 ) | 
						
							| 3 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  MblFn ) | 
						
							| 5 | 4 1 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 6 | 5 | renegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ - 𝐵 )  =  - ( ℜ ‘ 𝐵 ) ) | 
						
							| 7 | 6 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  ( ℜ ‘ - 𝐵 )  ↔  0  ≤  - ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 8 | 7 6 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 9 | 8 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 10 | 5 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) ) | 
						
							| 11 | 2 10 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 13 | 5 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 14 | 13 | iblre | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) ) | 
						
							| 15 | 12 14 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) | 
						
							| 16 | 15 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ 𝐵 ) ,  - ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 17 | 9 16 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 18 | 6 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ - 𝐵 )  =  - - ( ℜ ‘ 𝐵 ) ) | 
						
							| 19 | 13 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 20 | 19 | negnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - - ( ℜ ‘ 𝐵 )  =  ( ℜ ‘ 𝐵 ) ) | 
						
							| 21 | 18 20 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℜ ‘ - 𝐵 )  =  ( ℜ ‘ 𝐵 ) ) | 
						
							| 22 | 21 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  - ( ℜ ‘ - 𝐵 )  ↔  0  ≤  ( ℜ ‘ 𝐵 ) ) ) | 
						
							| 23 | 22 21 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 24 | 23 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 25 | 15 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ 𝐵 ) ,  ( ℜ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 26 | 24 25 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 27 | 5 | negcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℂ ) | 
						
							| 28 | 27 | recld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ - 𝐵 )  ∈  ℝ ) | 
						
							| 29 | 28 | iblre | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ - 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℜ ‘ - 𝐵 ) ,  ( ℜ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℜ ‘ - 𝐵 ) ,  - ( ℜ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) ) | 
						
							| 30 | 17 26 29 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ - 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 31 | 5 | imnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ - 𝐵 )  =  - ( ℑ ‘ 𝐵 ) ) | 
						
							| 32 | 31 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  ( ℑ ‘ - 𝐵 )  ↔  0  ≤  - ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 33 | 32 31 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 34 | 33 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 35 | 11 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 36 | 5 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 37 | 36 | iblre | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) ) | 
						
							| 38 | 35 37 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) | 
						
							| 39 | 38 | simprd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ 𝐵 ) ,  - ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 40 | 34 39 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 41 | 31 | negeqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ - 𝐵 )  =  - - ( ℑ ‘ 𝐵 ) ) | 
						
							| 42 | 36 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 43 | 42 | negnegd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - - ( ℑ ‘ 𝐵 )  =  ( ℑ ‘ 𝐵 ) ) | 
						
							| 44 | 41 43 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - ( ℑ ‘ - 𝐵 )  =  ( ℑ ‘ 𝐵 ) ) | 
						
							| 45 | 44 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  - ( ℑ ‘ - 𝐵 )  ↔  0  ≤  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 46 | 45 44 | ifbieq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 )  =  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 47 | 46 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 ) )  =  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 48 | 38 | simpld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ 𝐵 ) ,  ( ℑ ‘ 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 49 | 47 48 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1 ) | 
						
							| 50 | 27 | imcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℑ ‘ - 𝐵 )  ∈  ℝ ) | 
						
							| 51 | 50 | iblre | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ - 𝐵 ) )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  ( ℑ ‘ - 𝐵 ) ,  ( ℑ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  if ( 0  ≤  - ( ℑ ‘ - 𝐵 ) ,  - ( ℑ ‘ - 𝐵 ) ,  0 ) )  ∈  𝐿1 ) ) ) | 
						
							| 52 | 40 49 51 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ - 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 53 | 27 | iblcn | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐴  ↦  ( ℜ ‘ - 𝐵 ) )  ∈  𝐿1  ∧  ( 𝑥  ∈  𝐴  ↦  ( ℑ ‘ - 𝐵 ) )  ∈  𝐿1 ) ) ) | 
						
							| 54 | 30 52 53 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  𝐿1 ) |