Step |
Hyp |
Ref |
Expression |
1 |
|
iblrelem.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
2 |
|
iblpos.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
3 |
1
|
le0neg2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ 𝐵 ↔ - 𝐵 ≤ 0 ) ) |
4 |
2 3
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ≤ 0 ) |
5 |
4
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ≤ 0 ) |
6 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 0 ≤ - 𝐵 ) |
7 |
1
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → 𝐵 ∈ ℝ ) |
8 |
7
|
renegcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 ∈ ℝ ) |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
|
letri3 |
⊢ ( ( - 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝐵 = 0 ↔ ( - 𝐵 ≤ 0 ∧ 0 ≤ - 𝐵 ) ) ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → ( - 𝐵 = 0 ↔ ( - 𝐵 ≤ 0 ∧ 0 ≤ - 𝐵 ) ) ) |
12 |
5 6 11
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) ) → - 𝐵 = 0 ) |
13 |
12
|
ifeq1da |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , 0 , 0 ) ) |
14 |
|
ifid |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , 0 , 0 ) = 0 |
15 |
13 14
|
eqtrdi |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) = 0 ) |
16 |
15
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
17 |
|
fconstmpt |
⊢ ( ℝ × { 0 } ) = ( 𝑥 ∈ ℝ ↦ 0 ) |
18 |
16 17
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) = ( ℝ × { 0 } ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = ( ∫2 ‘ ( ℝ × { 0 } ) ) ) |
20 |
|
itg20 |
⊢ ( ∫2 ‘ ( ℝ × { 0 } ) ) = 0 |
21 |
19 20
|
eqtrdi |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - 𝐵 ) , - 𝐵 , 0 ) ) ) = 0 ) |