| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblrelem.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 2 |  | iblpos.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 3 | 1 | le0neg2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  𝐵  ↔  - 𝐵  ≤  0 ) ) | 
						
							| 4 | 2 3 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ≤  0 ) | 
						
							| 5 | 4 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  - 𝐵  ≤  0 ) | 
						
							| 6 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  0  ≤  - 𝐵 ) | 
						
							| 7 | 1 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 8 | 7 | renegcld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  - 𝐵  ∈  ℝ ) | 
						
							| 9 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 10 |  | letri3 | ⊢ ( ( - 𝐵  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( - 𝐵  =  0  ↔  ( - 𝐵  ≤  0  ∧  0  ≤  - 𝐵 ) ) ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  ( - 𝐵  =  0  ↔  ( - 𝐵  ≤  0  ∧  0  ≤  - 𝐵 ) ) ) | 
						
							| 12 | 5 6 11 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) )  →  - 𝐵  =  0 ) | 
						
							| 13 | 12 | ifeq1da | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  0 ,  0 ) ) | 
						
							| 14 |  | ifid | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  0 ,  0 )  =  0 | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 )  =  0 ) | 
						
							| 16 | 15 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 ) ) | 
						
							| 17 |  | fconstmpt | ⊢ ( ℝ  ×  { 0 } )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 18 | 16 17 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) )  =  ( ℝ  ×  { 0 } ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) ) ) | 
						
							| 20 |  | itg20 | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  - 𝐵 ) ,  - 𝐵 ,  0 ) ) )  =  0 ) |