Metamath Proof Explorer


Theorem iblsplitf

Description: A version of iblsplit using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iblsplitf.X 𝑥 𝜑
iblsplitf.vol ( 𝜑 → ( vol* ‘ ( 𝐴𝐵 ) ) = 0 )
iblsplitf.u ( 𝜑𝑈 = ( 𝐴𝐵 ) )
iblsplitf.c ( ( 𝜑𝑥𝑈 ) → 𝐶 ∈ ℂ )
iblsplitf.a ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
iblsplitf.b ( 𝜑 → ( 𝑥𝐵𝐶 ) ∈ 𝐿1 )
Assertion iblsplitf ( 𝜑 → ( 𝑥𝑈𝐶 ) ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 iblsplitf.X 𝑥 𝜑
2 iblsplitf.vol ( 𝜑 → ( vol* ‘ ( 𝐴𝐵 ) ) = 0 )
3 iblsplitf.u ( 𝜑𝑈 = ( 𝐴𝐵 ) )
4 iblsplitf.c ( ( 𝜑𝑥𝑈 ) → 𝐶 ∈ ℂ )
5 iblsplitf.a ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
6 iblsplitf.b ( 𝜑 → ( 𝑥𝐵𝐶 ) ∈ 𝐿1 )
7 nfcv 𝑦 𝐶
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
9 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
10 7 8 9 cbvmpt ( 𝑥𝑈𝐶 ) = ( 𝑦𝑈 𝑦 / 𝑥 𝐶 )
11 simpr ( ( 𝜑𝑦𝑈 ) → 𝑦𝑈 )
12 nfv 𝑥 𝑦𝑈
13 1 12 nfan 𝑥 ( 𝜑𝑦𝑈 )
14 4 adantlr ( ( ( 𝜑𝑦𝑈 ) ∧ 𝑥𝑈 ) → 𝐶 ∈ ℂ )
15 14 ex ( ( 𝜑𝑦𝑈 ) → ( 𝑥𝑈𝐶 ∈ ℂ ) )
16 13 15 ralrimi ( ( 𝜑𝑦𝑈 ) → ∀ 𝑥𝑈 𝐶 ∈ ℂ )
17 rspcsbela ( ( 𝑦𝑈 ∧ ∀ 𝑥𝑈 𝐶 ∈ ℂ ) → 𝑦 / 𝑥 𝐶 ∈ ℂ )
18 11 16 17 syl2anc ( ( 𝜑𝑦𝑈 ) → 𝑦 / 𝑥 𝐶 ∈ ℂ )
19 9 equcoms ( 𝑦 = 𝑥𝐶 = 𝑦 / 𝑥 𝐶 )
20 19 eqcomd ( 𝑦 = 𝑥 𝑦 / 𝑥 𝐶 = 𝐶 )
21 8 7 20 cbvmpt ( 𝑦𝐴 𝑦 / 𝑥 𝐶 ) = ( 𝑥𝐴𝐶 )
22 21 5 eqeltrid ( 𝜑 → ( 𝑦𝐴 𝑦 / 𝑥 𝐶 ) ∈ 𝐿1 )
23 8 7 20 cbvmpt ( 𝑦𝐵 𝑦 / 𝑥 𝐶 ) = ( 𝑥𝐵𝐶 )
24 23 6 eqeltrid ( 𝜑 → ( 𝑦𝐵 𝑦 / 𝑥 𝐶 ) ∈ 𝐿1 )
25 2 3 18 22 24 iblsplit ( 𝜑 → ( 𝑦𝑈 𝑦 / 𝑥 𝐶 ) ∈ 𝐿1 )
26 10 25 eqeltrid ( 𝜑 → ( 𝑥𝑈𝐶 ) ∈ 𝐿1 )