Step |
Hyp |
Ref |
Expression |
1 |
|
iblsplitf.X |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
iblsplitf.vol |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) = 0 ) |
3 |
|
iblsplitf.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
4 |
|
iblsplitf.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
5 |
|
iblsplitf.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
6 |
|
iblsplitf.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
9 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
10 |
7 8 9
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) = ( 𝑦 ∈ 𝑈 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑈 ) |
12 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝑈 |
13 |
1 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) |
14 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
15 |
14
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ∈ 𝑈 → 𝐶 ∈ ℂ ) ) |
16 |
13 15
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 𝐶 ∈ ℂ ) |
17 |
|
rspcsbela |
⊢ ( ( 𝑦 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 𝐶 ∈ ℂ ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
18 |
11 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑈 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
19 |
9
|
equcoms |
⊢ ( 𝑦 = 𝑥 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
20 |
19
|
eqcomd |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
21 |
8 7 20
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
22 |
21 5
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ∈ 𝐿1 ) |
23 |
8 7 20
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
24 |
23 6
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ∈ 𝐿1 ) |
25 |
2 3 18 22 24
|
iblsplit |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑈 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ∈ 𝐿1 ) |
26 |
10 25
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 ↦ 𝐶 ) ∈ 𝐿1 ) |