Step |
Hyp |
Ref |
Expression |
1 |
|
iblss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
iblss.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
3 |
|
iblss.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
iblss.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 ) |
5 |
1
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
6 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
8 |
|
mbfres |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ∈ MblFn ) |
9 |
7 2 8
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ∈ MblFn ) |
10 |
5 9
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
11 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) |
12 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
13 |
12
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
14 |
7 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
15 |
14
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
16 |
|
ax-icn |
⊢ i ∈ ℂ |
17 |
|
ine0 |
⊢ i ≠ 0 |
18 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) |
19 |
18
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 𝑘 ∈ ℤ ) |
20 |
|
expclz |
⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
21 |
16 17 19 20
|
mp3an12i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
22 |
|
expne0i |
⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) |
23 |
16 17 19 22
|
mp3an12i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → ( i ↑ 𝑘 ) ≠ 0 ) |
24 |
15 21 23
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐶 / ( i ↑ 𝑘 ) ) ∈ ℂ ) |
25 |
24
|
recld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) |
26 |
|
0re |
⊢ 0 ∈ ℝ |
27 |
|
ifcl |
⊢ ( ( ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) |
28 |
25 26 27
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) |
29 |
28
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ) |
30 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
31 |
26 25 30
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
32 |
|
elxrge0 |
⊢ ( if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ↔ ( if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
33 |
29 31 32
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
34 |
13 33
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
35 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
36 |
35
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
37 |
34 36
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
38 |
11 37
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
39 |
38
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
40 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
41 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) |
42 |
40 41 4 3
|
iblitg |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
43 |
18 42
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
44 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) |
45 |
35
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → 0 ∈ ( 0 [,] +∞ ) ) |
46 |
33 45
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
47 |
44 46
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
48 |
47
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
49 |
28
|
leidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
50 |
|
breq1 |
⊢ ( if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) → ( if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ↔ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
51 |
|
breq1 |
⊢ ( 0 = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) → ( 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ↔ if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
52 |
50 51
|
ifboth |
⊢ ( ( if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ∧ 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
53 |
49 31 52
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
54 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
55 |
54
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
56 |
53 55
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
57 |
|
0le0 |
⊢ 0 ≤ 0 |
58 |
57
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → 0 ≤ 0 ) |
59 |
13
|
stoic1a |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ 𝐴 ) |
60 |
59
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 ) |
61 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐵 → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 ) |
62 |
61
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 ) |
63 |
58 60 62
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ 𝐵 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
64 |
56 63
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐵 , if ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ) |
65 |
64 11 44
|
3brtr4g |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
66 |
65
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
67 |
|
reex |
⊢ ℝ ∈ V |
68 |
67
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ℝ ∈ V ) |
69 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
70 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
71 |
68 38 47 69 70
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
72 |
66 71
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
73 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
74 |
39 48 72 73
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
75 |
|
itg2lecl |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
76 |
39 43 74 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
77 |
76
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
78 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
79 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) |
80 |
12 14
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
81 |
78 79 80
|
isibl2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
82 |
10 77 81
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |