| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblss2.1 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | iblss2.2 | ⊢ ( 𝜑  →  𝐵  ∈  dom  vol ) | 
						
							| 3 |  | iblss2.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 4 |  | iblss2.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐶  =  0 ) | 
						
							| 5 |  | iblss2.5 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 6 |  | iblmbf | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  𝐿1  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 8 | 1 2 3 4 7 | mbfss | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  𝐴  ⊆  𝐵 ) | 
						
							| 10 | 9 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 11 | 10 | iftrued | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐵 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 12 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 14 | 11 13 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐵 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 ) ) | 
						
							| 15 |  | ifid | ⊢ if ( 𝑥  ∈  𝐵 ,  0 ,  0 )  =  0 | 
						
							| 16 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  𝜑 ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 19 | 17 18 | eldifd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  ( 𝐵  ∖  𝐴 ) ) | 
						
							| 20 | 16 19 4 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  𝐶  =  0 ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐶  /  ( i ↑ 𝑘 ) )  =  ( 0  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 22 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  𝑘  ∈  ( 0 ... 3 ) ) | 
						
							| 23 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  𝑘  ∈  ℤ ) | 
						
							| 24 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 25 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 26 |  | expclz | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  𝑘  ∈  ℤ )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 27 |  | expne0i | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  𝑘  ∈  ℤ )  →  ( i ↑ 𝑘 )  ≠  0 ) | 
						
							| 28 | 26 27 | div0d | ⊢ ( ( i  ∈  ℂ  ∧  i  ≠  0  ∧  𝑘  ∈  ℤ )  →  ( 0  /  ( i ↑ 𝑘 ) )  =  0 ) | 
						
							| 29 | 24 25 28 | mp3an12 | ⊢ ( 𝑘  ∈  ℤ  →  ( 0  /  ( i ↑ 𝑘 ) )  =  0 ) | 
						
							| 30 | 22 23 29 | 3syl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( 0  /  ( i ↑ 𝑘 ) )  =  0 ) | 
						
							| 31 | 21 30 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝐶  /  ( i ↑ 𝑘 ) )  =  0 ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ 0 ) ) | 
						
							| 33 |  | re0 | ⊢ ( ℜ ‘ 0 )  =  0 | 
						
							| 34 | 32 33 | eqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  0 ) | 
						
							| 35 | 34 | ifeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ,  0 ) ) | 
						
							| 36 |  | ifid | ⊢ if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ,  0 )  =  0 | 
						
							| 37 | 35 36 | eqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  ∧  𝑥  ∈  𝐵 )  →  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  0 ) | 
						
							| 38 | 37 | ifeq1da | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐵 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 𝑥  ∈  𝐵 ,  0 ,  0 ) ) | 
						
							| 39 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  0 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  0 ) | 
						
							| 41 | 15 38 40 | 3eqtr4a | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  ∧  ¬  𝑥  ∈  𝐴 )  →  if ( 𝑥  ∈  𝐵 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 ) ) | 
						
							| 42 | 14 41 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  if ( 𝑥  ∈  𝐵 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 ) ) | 
						
							| 43 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( 𝑥  ∈  𝐵 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 ) | 
						
							| 44 |  | ifan | ⊢ if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  if ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 ) | 
						
							| 45 | 42 43 44 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 46 | 45 | mpteq2dv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 48 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 49 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 50 | 48 49 5 3 | iblitg | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 51 | 23 50 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 52 | 47 51 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 3 ) )  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 53 | 52 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) | 
						
							| 54 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 55 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 56 |  | elun | ⊢ ( 𝑥  ∈  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 57 |  | undif2 | ⊢ ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  ( 𝐴  ∪  𝐵 ) | 
						
							| 58 |  | ssequn1 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  ∪  𝐵 )  =  𝐵 ) | 
						
							| 59 | 1 58 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  =  𝐵 ) | 
						
							| 60 | 57 59 | eqtrid | ⊢ ( 𝜑  →  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 ) | 
						
							| 61 | 60 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 62 | 56 61 | bitr3id | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 63 | 62 | biimpar | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  ( 𝐵  ∖  𝐴 ) ) ) | 
						
							| 64 | 7 3 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 65 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 66 | 4 65 | eqeltrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  ∖  𝐴 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 67 | 64 66 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  ( 𝐵  ∖  𝐴 ) ) )  →  𝐶  ∈  ℂ ) | 
						
							| 68 | 63 67 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐶  ∈  ℂ ) | 
						
							| 69 | 54 55 68 | isibl2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1  ↔  ( ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  MblFn  ∧  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  ∈  ℝ ) ) ) | 
						
							| 70 | 8 53 69 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  𝐶 )  ∈  𝐿1 ) |