Metamath Proof Explorer


Theorem iblsub

Description: Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgadd.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
itgadd.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
itgadd.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝑉 )
itgadd.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
Assertion iblsub ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 itgadd.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
2 itgadd.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
3 itgadd.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝑉 )
4 itgadd.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
5 iblmbf ( ( 𝑥𝐴𝐵 ) ∈ 𝐿1 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
6 2 5 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
7 6 1 mbfmptcl ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
8 iblmbf ( ( 𝑥𝐴𝐶 ) ∈ 𝐿1 → ( 𝑥𝐴𝐶 ) ∈ MblFn )
9 4 8 syl ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ MblFn )
10 9 3 mbfmptcl ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
11 7 10 negsubd ( ( 𝜑𝑥𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵𝐶 ) )
12 11 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) )
13 10 negcld ( ( 𝜑𝑥𝐴 ) → - 𝐶 ∈ ℂ )
14 3 4 iblneg ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐶 ) ∈ 𝐿1 )
15 7 2 13 14 ibladd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ 𝐿1 )
16 12 15 eqeltrrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ 𝐿1 )