| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difreicc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) = ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) |
| 2 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 3 |
|
iooretop |
⊢ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) |
| 4 |
|
iooretop |
⊢ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
| 5 |
|
unopn |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 6 |
2 3 4 5
|
mp3an |
⊢ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ ( topGen ‘ ran (,) ) |
| 7 |
1 6
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 8 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 9 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 10 |
9
|
iscld2 |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ↔ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) ) |
| 11 |
2 8 10
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ↔ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) ) |
| 12 |
7 11
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |