Step |
Hyp |
Ref |
Expression |
1 |
|
icccmp.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
icccmp.2 |
⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) |
3 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
4 |
|
eqid |
⊢ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } |
5 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐴 ∈ ℝ ) |
6 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐵 ∈ ℝ ) |
7 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐴 ≤ 𝐵 ) |
8 |
|
elpwi |
⊢ ( 𝑢 ∈ 𝒫 𝐽 → 𝑢 ⊆ 𝐽 ) |
9 |
8
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝑢 ⊆ 𝐽 ) |
10 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) |
11 |
1 2 3 4 5 6 7 9 10
|
icccmplem3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝐵 ) ) |
13 |
12
|
sseq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑥 = 𝐵 → ( ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
15 |
14
|
elrab |
⊢ ( 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } ↔ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
16 |
15
|
simprbi |
⊢ ( 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) |
17 |
11 16
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) |
18 |
17
|
expr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
19 |
18
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
20 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
21 |
1 20
|
eqeltri |
⊢ 𝐽 ∈ Top |
22 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
24 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
25 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
26 |
24 25
|
eqtr4i |
⊢ ℝ = ∪ 𝐽 |
27 |
26
|
cmpsub |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) ) |
28 |
21 23 27
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) ) |
29 |
19 28
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
30 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
31 |
|
rexr |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) |
32 |
|
icc0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
33 |
30 31 32
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
34 |
33
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
35 |
34
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) = ( 𝐽 ↾t ∅ ) ) |
36 |
|
rest0 |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = { ∅ } ) |
37 |
21 36
|
ax-mp |
⊢ ( 𝐽 ↾t ∅ ) = { ∅ } |
38 |
35 37
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) = { ∅ } ) |
39 |
|
0cmp |
⊢ { ∅ } ∈ Comp |
40 |
38 39
|
eqeltrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
41 |
|
lelttric |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴 ) ) |
42 |
29 40 41
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
43 |
2 42
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp ) |