Metamath Proof Explorer


Theorem icccmp

Description: A closed interval in RR is compact. (Contributed by Mario Carneiro, 13-Jun-2014)

Ref Expression
Hypotheses icccmp.1 𝐽 = ( topGen ‘ ran (,) )
icccmp.2 𝑇 = ( 𝐽t ( 𝐴 [,] 𝐵 ) )
Assertion icccmp ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp )

Proof

Step Hyp Ref Expression
1 icccmp.1 𝐽 = ( topGen ‘ ran (,) )
2 icccmp.2 𝑇 = ( 𝐽t ( 𝐴 [,] 𝐵 ) )
3 eqid ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
4 eqid { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ 𝑧 } = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ 𝑧 }
5 simplll ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ) ) → 𝐴 ∈ ℝ )
6 simpllr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ) ) → 𝐵 ∈ ℝ )
7 simplr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ) ) → 𝐴𝐵 )
8 elpwi ( 𝑢 ∈ 𝒫 𝐽𝑢𝐽 )
9 8 ad2antrl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ) ) → 𝑢𝐽 )
10 simprr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 )
11 1 2 3 4 5 6 7 9 10 icccmplem3 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ) ) → 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ 𝑧 } )
12 oveq2 ( 𝑥 = 𝐵 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝐵 ) )
13 12 sseq1d ( 𝑥 = 𝐵 → ( ( 𝐴 [,] 𝑥 ) ⊆ 𝑧 ↔ ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 ) )
14 13 rexbidv ( 𝑥 = 𝐵 → ( ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 ) )
15 14 elrab ( 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ 𝑧 } ↔ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 ) )
16 15 simprbi ( 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ 𝑧 } → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 )
17 11 16 syl ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 )
18 17 expr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 ) )
19 18 ralrimiva ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) → ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 ) )
20 retop ( topGen ‘ ran (,) ) ∈ Top
21 1 20 eqeltri 𝐽 ∈ Top
22 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
23 22 adantr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
24 uniretop ℝ = ( topGen ‘ ran (,) )
25 1 unieqi 𝐽 = ( topGen ‘ ran (,) )
26 24 25 eqtr4i ℝ = 𝐽
27 26 cmpsub ( ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( 𝐽t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 ) ) )
28 21 23 27 sylancr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) → ( ( 𝐽t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑧 ) ) )
29 19 28 mpbird ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴𝐵 ) → ( 𝐽t ( 𝐴 [,] 𝐵 ) ) ∈ Comp )
30 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
31 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
32 icc0 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
33 30 31 32 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) )
34 33 biimpar ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ )
35 34 oveq2d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽t ( 𝐴 [,] 𝐵 ) ) = ( 𝐽t ∅ ) )
36 rest0 ( 𝐽 ∈ Top → ( 𝐽t ∅ ) = { ∅ } )
37 21 36 ax-mp ( 𝐽t ∅ ) = { ∅ }
38 35 37 eqtrdi ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽t ( 𝐴 [,] 𝐵 ) ) = { ∅ } )
39 0cmp { ∅ } ∈ Comp
40 38 39 eqeltrdi ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽t ( 𝐴 [,] 𝐵 ) ) ∈ Comp )
41 lelttric ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵𝐵 < 𝐴 ) )
42 29 40 41 mpjaodan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐽t ( 𝐴 [,] 𝐵 ) ) ∈ Comp )
43 2 42 eqeltrid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp )