| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icccmp.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
icccmp.2 |
⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) |
| 3 |
|
icccmp.3 |
⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 4 |
|
icccmp.4 |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } |
| 5 |
|
icccmp.5 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
icccmp.6 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 7 |
|
icccmp.7 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 8 |
|
icccmp.8 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 9 |
|
icccmp.9 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 10 |
5
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 11 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 12 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 13 |
10 11 7 12
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 14 |
9 13
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑈 ) |
| 15 |
|
eluni2 |
⊢ ( 𝐴 ∈ ∪ 𝑈 ↔ ∃ 𝑢 ∈ 𝑈 𝐴 ∈ 𝑢 ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑈 𝐴 ∈ 𝑢 ) |
| 17 |
|
snssi |
⊢ ( 𝑢 ∈ 𝑈 → { 𝑢 } ⊆ 𝑈 ) |
| 18 |
17
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ⊆ 𝑈 ) |
| 19 |
|
snex |
⊢ { 𝑢 } ∈ V |
| 20 |
19
|
elpw |
⊢ ( { 𝑢 } ∈ 𝒫 𝑈 ↔ { 𝑢 } ⊆ 𝑈 ) |
| 21 |
18 20
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ∈ 𝒫 𝑈 ) |
| 22 |
|
snfi |
⊢ { 𝑢 } ∈ Fin |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ∈ Fin ) |
| 24 |
21 23
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝑢 } ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → 𝐴 ∈ ℝ* ) |
| 26 |
|
iccid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 27 |
25 26
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 28 |
|
snssi |
⊢ ( 𝐴 ∈ 𝑢 → { 𝐴 } ⊆ 𝑢 ) |
| 29 |
28
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → { 𝐴 } ⊆ 𝑢 ) |
| 30 |
27 29
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → ( 𝐴 [,] 𝐴 ) ⊆ 𝑢 ) |
| 31 |
|
unieq |
⊢ ( 𝑧 = { 𝑢 } → ∪ 𝑧 = ∪ { 𝑢 } ) |
| 32 |
|
unisnv |
⊢ ∪ { 𝑢 } = 𝑢 |
| 33 |
31 32
|
eqtrdi |
⊢ ( 𝑧 = { 𝑢 } → ∪ 𝑧 = 𝑢 ) |
| 34 |
33
|
sseq2d |
⊢ ( 𝑧 = { 𝑢 } → ( ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝐴 ) ⊆ 𝑢 ) ) |
| 35 |
34
|
rspcev |
⊢ ( ( { 𝑢 } ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝐴 ) ⊆ 𝑢 ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) |
| 36 |
24 30 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝑈 ∧ 𝐴 ∈ 𝑢 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) |
| 37 |
16 36
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) |
| 38 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝐴 ) ) |
| 39 |
38
|
sseq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) ) |
| 40 |
39
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) ) |
| 41 |
40 4
|
elrab2 |
⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝐴 ) ⊆ ∪ 𝑧 ) ) |
| 42 |
13 37 41
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 43 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 44 |
43
|
sseli |
⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 45 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 46 |
5 6 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 47 |
46
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 48 |
47
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ≤ 𝐵 ) |
| 49 |
44 48
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ 𝐵 ) |
| 50 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 51 |
42 50
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |