Step |
Hyp |
Ref |
Expression |
1 |
|
icccmp.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
icccmp.2 |
⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) |
3 |
|
icccmp.3 |
⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
4 |
|
icccmp.4 |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } |
5 |
|
icccmp.5 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
|
icccmp.6 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
7 |
|
icccmp.7 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
8 |
|
icccmp.8 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
9 |
|
icccmp.9 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
10 |
|
icccmp.10 |
⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) |
11 |
|
icccmp.11 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
12 |
|
icccmp.12 |
⊢ ( 𝜑 → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ⊆ 𝑉 ) |
13 |
|
icccmp.13 |
⊢ 𝐺 = sup ( 𝑆 , ℝ , < ) |
14 |
|
icccmp.14 |
⊢ 𝑅 = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) |
15 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
16 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
17 |
5 6 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
18 |
15 17
|
sstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
19 |
1 2 3 4 5 6 7 8 9
|
icccmplem1 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
20 |
19
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
21 |
20
|
ne0d |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
22 |
19
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
23 |
|
brralrspcev |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) |
24 |
6 22 23
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) |
25 |
18 21 24
|
suprcld |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
26 |
13 25
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
27 |
11
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ+ ) |
28 |
26 27
|
ltaddrpd |
⊢ ( 𝜑 → 𝐺 < ( 𝐺 + ( 𝐶 / 2 ) ) ) |
29 |
27
|
rpred |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ ) |
30 |
26 29
|
readdcld |
⊢ ( 𝜑 → ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ) |
31 |
26 30
|
ltnled |
⊢ ( 𝜑 → ( 𝐺 < ( 𝐺 + ( 𝐶 / 2 ) ) ↔ ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
32 |
28 31
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) |
33 |
30 6
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ∈ ℝ ) |
34 |
14 33
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
35 |
18 21 24 20
|
suprubd |
⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
36 |
35 13
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 ≤ 𝐺 ) |
37 |
26 30 28
|
ltled |
⊢ ( 𝜑 → 𝐺 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
38 |
5 26 30 36 37
|
letrd |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
39 |
|
breq2 |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) → ( 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ↔ 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) ) |
40 |
|
breq2 |
⊢ ( 𝐵 = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) ) |
41 |
39 40
|
ifboth |
⊢ ( ( 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) |
42 |
38 7 41
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) |
43 |
42 14
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 ≤ 𝑅 ) |
44 |
|
min2 |
⊢ ( ( ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ 𝐵 ) |
45 |
30 6 44
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ 𝐵 ) |
46 |
14 45
|
eqbrtrid |
⊢ ( 𝜑 → 𝑅 ≤ 𝐵 ) |
47 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵 ) ) ) |
48 |
5 6 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵 ) ) ) |
49 |
34 43 46 48
|
mpbir3and |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ) |
50 |
26 11
|
ltsubrpd |
⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) < 𝐺 ) |
51 |
50 13
|
breqtrdi |
⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ) |
52 |
11
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
53 |
26 52
|
resubcld |
⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) ∈ ℝ ) |
54 |
|
suprlub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) ∧ ( 𝐺 − 𝐶 ) ∈ ℝ ) → ( ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) ) |
55 |
18 21 24 53 54
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) ) |
56 |
51 55
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) |
57 |
|
oveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝑣 ) ) |
58 |
57
|
sseq1d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
59 |
58
|
rexbidv |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
60 |
59 4
|
elrab2 |
⊢ ( 𝑣 ∈ 𝑆 ↔ ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
61 |
|
unieq |
⊢ ( 𝑧 = 𝑤 → ∪ 𝑧 = ∪ 𝑤 ) |
62 |
61
|
sseq2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) ) |
63 |
62
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) |
64 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
65 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ↔ ( 𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin ) ) |
66 |
64 65
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin ) ) |
67 |
66
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ 𝒫 𝑈 ) |
68 |
67
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ⊆ 𝑈 ) |
69 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝜑 ) |
70 |
69 10
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑉 ∈ 𝑈 ) |
71 |
70
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → { 𝑉 } ⊆ 𝑈 ) |
72 |
68 71
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ⊆ 𝑈 ) |
73 |
|
vex |
⊢ 𝑤 ∈ V |
74 |
|
snex |
⊢ { 𝑉 } ∈ V |
75 |
73 74
|
unex |
⊢ ( 𝑤 ∪ { 𝑉 } ) ∈ V |
76 |
75
|
elpw |
⊢ ( ( 𝑤 ∪ { 𝑉 } ) ∈ 𝒫 𝑈 ↔ ( 𝑤 ∪ { 𝑉 } ) ⊆ 𝑈 ) |
77 |
72 76
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ 𝒫 𝑈 ) |
78 |
66
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ Fin ) |
79 |
|
snfi |
⊢ { 𝑉 } ∈ Fin |
80 |
|
unfi |
⊢ ( ( 𝑤 ∈ Fin ∧ { 𝑉 } ∈ Fin ) → ( 𝑤 ∪ { 𝑉 } ) ∈ Fin ) |
81 |
78 79 80
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ Fin ) |
82 |
77 81
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
83 |
|
simplr2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) |
84 |
|
ssun1 |
⊢ ∪ 𝑤 ⊆ ( ∪ 𝑤 ∪ 𝑉 ) |
85 |
83 84
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝐴 [,] 𝑣 ) ⊆ ( ∪ 𝑤 ∪ 𝑉 ) ) |
86 |
69 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝐴 ∈ ℝ ) |
87 |
69 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑅 ∈ ℝ ) |
88 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
89 |
86 87 88
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
90 |
89
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) |
91 |
90
|
simp1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ∈ ℝ ) |
92 |
91
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ℝ ) |
93 |
90
|
simp2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝐴 ≤ 𝑡 ) |
94 |
93
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝐴 ≤ 𝑡 ) |
95 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ≤ 𝑣 ) |
96 |
69 17
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
97 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) |
98 |
96 97
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑣 ∈ ℝ ) |
99 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
100 |
86 98 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
101 |
100
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
102 |
92 94 95 101
|
mpbir3and |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ) |
103 |
85 102
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
104 |
103
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ≤ 𝑣 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
105 |
69
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝜑 ) |
106 |
105 12
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ⊆ 𝑉 ) |
107 |
91
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ℝ ) |
108 |
105 53
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) ∈ ℝ ) |
109 |
98
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑣 ∈ ℝ ) |
110 |
|
simplr3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) < 𝑣 ) |
111 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑣 < 𝑡 ) |
112 |
108 109 107 110 111
|
lttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) < 𝑡 ) |
113 |
105 34
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑅 ∈ ℝ ) |
114 |
26 52
|
readdcld |
⊢ ( 𝜑 → ( 𝐺 + 𝐶 ) ∈ ℝ ) |
115 |
105 114
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 + 𝐶 ) ∈ ℝ ) |
116 |
90
|
simp3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ≤ 𝑅 ) |
117 |
116
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ≤ 𝑅 ) |
118 |
|
min1 |
⊢ ( ( ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
119 |
30 6 118
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
120 |
14 119
|
eqbrtrid |
⊢ ( 𝜑 → 𝑅 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
121 |
|
rphalflt |
⊢ ( 𝐶 ∈ ℝ+ → ( 𝐶 / 2 ) < 𝐶 ) |
122 |
11 121
|
syl |
⊢ ( 𝜑 → ( 𝐶 / 2 ) < 𝐶 ) |
123 |
29 52 26 122
|
ltadd2dd |
⊢ ( 𝜑 → ( 𝐺 + ( 𝐶 / 2 ) ) < ( 𝐺 + 𝐶 ) ) |
124 |
34 30 114 120 123
|
lelttrd |
⊢ ( 𝜑 → 𝑅 < ( 𝐺 + 𝐶 ) ) |
125 |
105 124
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑅 < ( 𝐺 + 𝐶 ) ) |
126 |
107 113 115 117 125
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 < ( 𝐺 + 𝐶 ) ) |
127 |
|
rexr |
⊢ ( ( 𝐺 − 𝐶 ) ∈ ℝ → ( 𝐺 − 𝐶 ) ∈ ℝ* ) |
128 |
|
rexr |
⊢ ( ( 𝐺 + 𝐶 ) ∈ ℝ → ( 𝐺 + 𝐶 ) ∈ ℝ* ) |
129 |
|
elioo2 |
⊢ ( ( ( 𝐺 − 𝐶 ) ∈ ℝ* ∧ ( 𝐺 + 𝐶 ) ∈ ℝ* ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
130 |
127 128 129
|
syl2an |
⊢ ( ( ( 𝐺 − 𝐶 ) ∈ ℝ ∧ ( 𝐺 + 𝐶 ) ∈ ℝ ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
131 |
108 115 130
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
132 |
107 112 126 131
|
mpbir3and |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
133 |
105 26
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐺 ∈ ℝ ) |
134 |
105 11
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐶 ∈ ℝ+ ) |
135 |
134
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐶 ∈ ℝ ) |
136 |
3
|
bl2ioo |
⊢ ( ( 𝐺 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) = ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
137 |
133 135 136
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) = ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
138 |
132 137
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ) |
139 |
106 138
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ 𝑉 ) |
140 |
|
elun2 |
⊢ ( 𝑡 ∈ 𝑉 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
141 |
139 140
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
142 |
141
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑣 < 𝑡 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
143 |
98
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑣 ∈ ℝ ) |
144 |
|
lelttric |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡 ) ) |
145 |
91 143 144
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡 ) ) |
146 |
104 142 145
|
mpjaod |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
147 |
146
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
148 |
147
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝑅 ) ⊆ ( ∪ 𝑤 ∪ 𝑉 ) ) |
149 |
|
uniun |
⊢ ∪ ( 𝑤 ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ ∪ { 𝑉 } ) |
150 |
|
unisng |
⊢ ( 𝑉 ∈ 𝑈 → ∪ { 𝑉 } = 𝑉 ) |
151 |
70 150
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∪ { 𝑉 } = 𝑉 ) |
152 |
151
|
uneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( ∪ 𝑤 ∪ ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ 𝑉 ) ) |
153 |
149 152
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∪ ( 𝑤 ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ 𝑉 ) ) |
154 |
148 153
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) |
155 |
|
unieq |
⊢ ( 𝑦 = ( 𝑤 ∪ { 𝑉 } ) → ∪ 𝑦 = ∪ ( 𝑤 ∪ { 𝑉 } ) ) |
156 |
155
|
sseq2d |
⊢ ( 𝑦 = ( 𝑤 ∪ { 𝑉 } ) → ( ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ↔ ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) ) |
157 |
156
|
rspcev |
⊢ ( ( ( 𝑤 ∪ { 𝑉 } ) ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
158 |
82 154 157
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
159 |
158
|
3exp2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) ) |
160 |
159
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
161 |
63 160
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
162 |
161
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
163 |
60 162
|
syl5bi |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑆 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
164 |
163
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
165 |
56 164
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
166 |
|
oveq2 |
⊢ ( 𝑣 = 𝑅 → ( 𝐴 [,] 𝑣 ) = ( 𝐴 [,] 𝑅 ) ) |
167 |
166
|
sseq1d |
⊢ ( 𝑣 = 𝑅 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ↔ ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
168 |
167
|
rexbidv |
⊢ ( 𝑣 = 𝑅 → ( ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
169 |
|
unieq |
⊢ ( 𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦 ) |
170 |
169
|
sseq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) ) |
171 |
170
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) |
172 |
59 171
|
bitrdi |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) ) |
173 |
172
|
cbvrabv |
⊢ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } = { 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 } |
174 |
4 173
|
eqtri |
⊢ 𝑆 = { 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 } |
175 |
168 174
|
elrab2 |
⊢ ( 𝑅 ∈ 𝑆 ↔ ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
176 |
49 165 175
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
177 |
18 21 24 176
|
suprubd |
⊢ ( 𝜑 → 𝑅 ≤ sup ( 𝑆 , ℝ , < ) ) |
178 |
177 13
|
breqtrrdi |
⊢ ( 𝜑 → 𝑅 ≤ 𝐺 ) |
179 |
|
iftrue |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) = ( 𝐺 + ( 𝐶 / 2 ) ) ) |
180 |
14 179
|
syl5eq |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → 𝑅 = ( 𝐺 + ( 𝐶 / 2 ) ) ) |
181 |
180
|
breq1d |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → ( 𝑅 ≤ 𝐺 ↔ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
182 |
178 181
|
syl5ibcom |
⊢ ( 𝜑 → ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
183 |
32 182
|
mtod |
⊢ ( 𝜑 → ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 ) |
184 |
|
iffalse |
⊢ ( ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) = 𝐵 ) |
185 |
14 184
|
syl5eq |
⊢ ( ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → 𝑅 = 𝐵 ) |
186 |
183 185
|
syl |
⊢ ( 𝜑 → 𝑅 = 𝐵 ) |
187 |
186 176
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |