| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icccmp.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
icccmp.2 |
⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) |
| 3 |
|
icccmp.3 |
⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 4 |
|
icccmp.4 |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } |
| 5 |
|
icccmp.5 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
icccmp.6 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 7 |
|
icccmp.7 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 8 |
|
icccmp.8 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 9 |
|
icccmp.9 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 10 |
|
icccmp.10 |
⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) |
| 11 |
|
icccmp.11 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 12 |
|
icccmp.12 |
⊢ ( 𝜑 → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ⊆ 𝑉 ) |
| 13 |
|
icccmp.13 |
⊢ 𝐺 = sup ( 𝑆 , ℝ , < ) |
| 14 |
|
icccmp.14 |
⊢ 𝑅 = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) |
| 15 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 16 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 17 |
5 6 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 18 |
15 17
|
sstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 19 |
1 2 3 4 5 6 7 8 9
|
icccmplem1 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| 20 |
19
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 21 |
20
|
ne0d |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 22 |
19
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 23 |
|
brralrspcev |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) |
| 24 |
6 22 23
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) |
| 25 |
18 21 24
|
suprcld |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
| 26 |
13 25
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
| 27 |
11
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ+ ) |
| 28 |
26 27
|
ltaddrpd |
⊢ ( 𝜑 → 𝐺 < ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 29 |
27
|
rpred |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ ) |
| 30 |
26 29
|
readdcld |
⊢ ( 𝜑 → ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ) |
| 31 |
26 30
|
ltnled |
⊢ ( 𝜑 → ( 𝐺 < ( 𝐺 + ( 𝐶 / 2 ) ) ↔ ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
| 32 |
28 31
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) |
| 33 |
30 6
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ∈ ℝ ) |
| 34 |
14 33
|
eqeltrid |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 35 |
18 21 24 20
|
suprubd |
⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 36 |
35 13
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 ≤ 𝐺 ) |
| 37 |
26 30 28
|
ltled |
⊢ ( 𝜑 → 𝐺 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 38 |
5 26 30 36 37
|
letrd |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 39 |
|
breq2 |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) → ( 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ↔ 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) ) |
| 40 |
|
breq2 |
⊢ ( 𝐵 = if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) ) |
| 41 |
39 40
|
ifboth |
⊢ ( ( 𝐴 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) |
| 42 |
38 7 41
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ≤ if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ) |
| 43 |
42 14
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 ≤ 𝑅 ) |
| 44 |
|
min2 |
⊢ ( ( ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ 𝐵 ) |
| 45 |
30 6 44
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ 𝐵 ) |
| 46 |
14 45
|
eqbrtrid |
⊢ ( 𝜑 → 𝑅 ≤ 𝐵 ) |
| 47 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵 ) ) ) |
| 48 |
5 6 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵 ) ) ) |
| 49 |
34 43 46 48
|
mpbir3and |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 50 |
26 11
|
ltsubrpd |
⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) < 𝐺 ) |
| 51 |
50 13
|
breqtrdi |
⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ) |
| 52 |
11
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 53 |
26 52
|
resubcld |
⊢ ( 𝜑 → ( 𝐺 − 𝐶 ) ∈ ℝ ) |
| 54 |
|
suprlub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑛 ) ∧ ( 𝐺 − 𝐶 ) ∈ ℝ ) → ( ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) ) |
| 55 |
18 21 24 53 54
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐺 − 𝐶 ) < sup ( 𝑆 , ℝ , < ) ↔ ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) ) |
| 56 |
51 55
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 ) |
| 57 |
|
oveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝑣 ) ) |
| 58 |
57
|
sseq1d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
| 59 |
58
|
rexbidv |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
| 60 |
59 4
|
elrab2 |
⊢ ( 𝑣 ∈ 𝑆 ↔ ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) ) |
| 61 |
|
unieq |
⊢ ( 𝑧 = 𝑤 → ∪ 𝑧 = ∪ 𝑤 ) |
| 62 |
61
|
sseq2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) ) |
| 63 |
62
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) |
| 64 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 65 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ↔ ( 𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin ) ) |
| 66 |
64 65
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin ) ) |
| 67 |
66
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ 𝒫 𝑈 ) |
| 68 |
67
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ⊆ 𝑈 ) |
| 69 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝜑 ) |
| 70 |
69 10
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑉 ∈ 𝑈 ) |
| 71 |
70
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → { 𝑉 } ⊆ 𝑈 ) |
| 72 |
68 71
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ⊆ 𝑈 ) |
| 73 |
|
vex |
⊢ 𝑤 ∈ V |
| 74 |
|
snex |
⊢ { 𝑉 } ∈ V |
| 75 |
73 74
|
unex |
⊢ ( 𝑤 ∪ { 𝑉 } ) ∈ V |
| 76 |
75
|
elpw |
⊢ ( ( 𝑤 ∪ { 𝑉 } ) ∈ 𝒫 𝑈 ↔ ( 𝑤 ∪ { 𝑉 } ) ⊆ 𝑈 ) |
| 77 |
72 76
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ 𝒫 𝑈 ) |
| 78 |
66
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑤 ∈ Fin ) |
| 79 |
|
snfi |
⊢ { 𝑉 } ∈ Fin |
| 80 |
|
unfi |
⊢ ( ( 𝑤 ∈ Fin ∧ { 𝑉 } ∈ Fin ) → ( 𝑤 ∪ { 𝑉 } ) ∈ Fin ) |
| 81 |
78 79 80
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ Fin ) |
| 82 |
77 81
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑤 ∪ { 𝑉 } ) ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 83 |
|
simplr2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ) |
| 84 |
|
ssun1 |
⊢ ∪ 𝑤 ⊆ ( ∪ 𝑤 ∪ 𝑉 ) |
| 85 |
83 84
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝐴 [,] 𝑣 ) ⊆ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 86 |
69 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝐴 ∈ ℝ ) |
| 87 |
69 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑅 ∈ ℝ ) |
| 88 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
| 89 |
86 87 88
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) ) |
| 90 |
89
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅 ) ) |
| 91 |
90
|
simp1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ∈ ℝ ) |
| 92 |
91
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ℝ ) |
| 93 |
90
|
simp2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝐴 ≤ 𝑡 ) |
| 94 |
93
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝐴 ≤ 𝑡 ) |
| 95 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ≤ 𝑣 ) |
| 96 |
69 17
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 97 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 98 |
96 97
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → 𝑣 ∈ ℝ ) |
| 99 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
| 100 |
86 98 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
| 101 |
100
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ↔ ( 𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣 ) ) ) |
| 102 |
92 94 95 101
|
mpbir3and |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝑣 ) ) |
| 103 |
85 102
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑡 ≤ 𝑣 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 104 |
103
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ≤ 𝑣 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
| 105 |
69
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝜑 ) |
| 106 |
105 12
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ⊆ 𝑉 ) |
| 107 |
91
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ℝ ) |
| 108 |
105 53
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) ∈ ℝ ) |
| 109 |
98
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑣 ∈ ℝ ) |
| 110 |
|
simplr3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) < 𝑣 ) |
| 111 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑣 < 𝑡 ) |
| 112 |
108 109 107 110 111
|
lttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 − 𝐶 ) < 𝑡 ) |
| 113 |
105 34
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑅 ∈ ℝ ) |
| 114 |
26 52
|
readdcld |
⊢ ( 𝜑 → ( 𝐺 + 𝐶 ) ∈ ℝ ) |
| 115 |
105 114
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 + 𝐶 ) ∈ ℝ ) |
| 116 |
90
|
simp3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ≤ 𝑅 ) |
| 117 |
116
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ≤ 𝑅 ) |
| 118 |
|
min1 |
⊢ ( ( ( 𝐺 + ( 𝐶 / 2 ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 119 |
30 6 118
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 120 |
14 119
|
eqbrtrid |
⊢ ( 𝜑 → 𝑅 ≤ ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 121 |
|
rphalflt |
⊢ ( 𝐶 ∈ ℝ+ → ( 𝐶 / 2 ) < 𝐶 ) |
| 122 |
11 121
|
syl |
⊢ ( 𝜑 → ( 𝐶 / 2 ) < 𝐶 ) |
| 123 |
29 52 26 122
|
ltadd2dd |
⊢ ( 𝜑 → ( 𝐺 + ( 𝐶 / 2 ) ) < ( 𝐺 + 𝐶 ) ) |
| 124 |
34 30 114 120 123
|
lelttrd |
⊢ ( 𝜑 → 𝑅 < ( 𝐺 + 𝐶 ) ) |
| 125 |
105 124
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑅 < ( 𝐺 + 𝐶 ) ) |
| 126 |
107 113 115 117 125
|
lelttrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 < ( 𝐺 + 𝐶 ) ) |
| 127 |
|
rexr |
⊢ ( ( 𝐺 − 𝐶 ) ∈ ℝ → ( 𝐺 − 𝐶 ) ∈ ℝ* ) |
| 128 |
|
rexr |
⊢ ( ( 𝐺 + 𝐶 ) ∈ ℝ → ( 𝐺 + 𝐶 ) ∈ ℝ* ) |
| 129 |
|
elioo2 |
⊢ ( ( ( 𝐺 − 𝐶 ) ∈ ℝ* ∧ ( 𝐺 + 𝐶 ) ∈ ℝ* ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
| 130 |
127 128 129
|
syl2an |
⊢ ( ( ( 𝐺 − 𝐶 ) ∈ ℝ ∧ ( 𝐺 + 𝐶 ) ∈ ℝ ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
| 131 |
108 115 130
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐺 − 𝐶 ) < 𝑡 ∧ 𝑡 < ( 𝐺 + 𝐶 ) ) ) ) |
| 132 |
107 112 126 131
|
mpbir3and |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
| 133 |
105 26
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐺 ∈ ℝ ) |
| 134 |
105 11
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐶 ∈ ℝ+ ) |
| 135 |
134
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝐶 ∈ ℝ ) |
| 136 |
3
|
bl2ioo |
⊢ ( ( 𝐺 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) = ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
| 137 |
133 135 136
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) = ( ( 𝐺 − 𝐶 ) (,) ( 𝐺 + 𝐶 ) ) ) |
| 138 |
132 137
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( 𝐺 ( ball ‘ 𝐷 ) 𝐶 ) ) |
| 139 |
106 138
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ 𝑉 ) |
| 140 |
|
elun2 |
⊢ ( 𝑡 ∈ 𝑉 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 141 |
139 140
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ∧ 𝑣 < 𝑡 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 142 |
141
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑣 < 𝑡 → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
| 143 |
98
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑣 ∈ ℝ ) |
| 144 |
|
lelttric |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡 ) ) |
| 145 |
91 143 144
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → ( 𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡 ) ) |
| 146 |
104 142 145
|
mpjaod |
⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) ∧ 𝑡 ∈ ( 𝐴 [,] 𝑅 ) ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 147 |
146
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝑅 ) → 𝑡 ∈ ( ∪ 𝑤 ∪ 𝑉 ) ) ) |
| 148 |
147
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝑅 ) ⊆ ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 149 |
|
uniun |
⊢ ∪ ( 𝑤 ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ ∪ { 𝑉 } ) |
| 150 |
|
unisng |
⊢ ( 𝑉 ∈ 𝑈 → ∪ { 𝑉 } = 𝑉 ) |
| 151 |
70 150
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∪ { 𝑉 } = 𝑉 ) |
| 152 |
151
|
uneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( ∪ 𝑤 ∪ ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 153 |
149 152
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∪ ( 𝑤 ∪ { 𝑉 } ) = ( ∪ 𝑤 ∪ 𝑉 ) ) |
| 154 |
148 153
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) |
| 155 |
|
unieq |
⊢ ( 𝑦 = ( 𝑤 ∪ { 𝑉 } ) → ∪ 𝑦 = ∪ ( 𝑤 ∪ { 𝑉 } ) ) |
| 156 |
155
|
sseq2d |
⊢ ( 𝑦 = ( 𝑤 ∪ { 𝑉 } ) → ( ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ↔ ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) ) |
| 157 |
156
|
rspcev |
⊢ ( ( ( 𝑤 ∪ { 𝑉 } ) ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑅 ) ⊆ ∪ ( 𝑤 ∪ { 𝑉 } ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
| 158 |
82 154 157
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 ∧ ( 𝐺 − 𝐶 ) < 𝑣 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
| 159 |
158
|
3exp2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) ) |
| 160 |
159
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∃ 𝑤 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑤 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 161 |
63 160
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 162 |
161
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ) → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 163 |
60 162
|
biimtrid |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑆 → ( ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) ) |
| 164 |
163
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ 𝑆 ( 𝐺 − 𝐶 ) < 𝑣 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 165 |
56 164
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) |
| 166 |
|
oveq2 |
⊢ ( 𝑣 = 𝑅 → ( 𝐴 [,] 𝑣 ) = ( 𝐴 [,] 𝑅 ) ) |
| 167 |
166
|
sseq1d |
⊢ ( 𝑣 = 𝑅 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ↔ ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 168 |
167
|
rexbidv |
⊢ ( 𝑣 = 𝑅 → ( ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 169 |
|
unieq |
⊢ ( 𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦 ) |
| 170 |
169
|
sseq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) ) |
| 171 |
170
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) |
| 172 |
59 171
|
bitrdi |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 ) ) |
| 173 |
172
|
cbvrabv |
⊢ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } = { 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 } |
| 174 |
4 173
|
eqtri |
⊢ 𝑆 = { 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑣 ) ⊆ ∪ 𝑦 } |
| 175 |
168 174
|
elrab2 |
⊢ ( 𝑅 ∈ 𝑆 ↔ ( 𝑅 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑦 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑅 ) ⊆ ∪ 𝑦 ) ) |
| 176 |
49 165 175
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ 𝑆 ) |
| 177 |
18 21 24 176
|
suprubd |
⊢ ( 𝜑 → 𝑅 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 178 |
177 13
|
breqtrrdi |
⊢ ( 𝜑 → 𝑅 ≤ 𝐺 ) |
| 179 |
|
iftrue |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) = ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 180 |
14 179
|
eqtrid |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → 𝑅 = ( 𝐺 + ( 𝐶 / 2 ) ) ) |
| 181 |
180
|
breq1d |
⊢ ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → ( 𝑅 ≤ 𝐺 ↔ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
| 182 |
178 181
|
syl5ibcom |
⊢ ( 𝜑 → ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐺 ) ) |
| 183 |
32 182
|
mtod |
⊢ ( 𝜑 → ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 ) |
| 184 |
|
iffalse |
⊢ ( ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → if ( ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 , ( 𝐺 + ( 𝐶 / 2 ) ) , 𝐵 ) = 𝐵 ) |
| 185 |
14 184
|
eqtrid |
⊢ ( ¬ ( 𝐺 + ( 𝐶 / 2 ) ) ≤ 𝐵 → 𝑅 = 𝐵 ) |
| 186 |
183 185
|
syl |
⊢ ( 𝜑 → 𝑅 = 𝐵 ) |
| 187 |
186 176
|
eqeltrrd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |