| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icccmp.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 2 |
|
icccmp.2 |
⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) |
| 3 |
|
icccmp.3 |
⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 4 |
|
icccmp.4 |
⊢ 𝑆 = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } |
| 5 |
|
icccmp.5 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
icccmp.6 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 7 |
|
icccmp.7 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 8 |
|
icccmp.8 |
⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) |
| 9 |
|
icccmp.9 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 10 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) |
| 11 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 12 |
5 6 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 13 |
10 12
|
sstrid |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 14 |
1 2 3 4 5 6 7 8 9
|
icccmplem1 |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| 15 |
14
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 16 |
15
|
ne0d |
⊢ ( 𝜑 → 𝑆 ≠ ∅ ) |
| 17 |
14
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 18 |
|
brralrspcev |
⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) → ∃ 𝑣 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑣 ) |
| 19 |
6 17 18
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑣 ) |
| 20 |
13 16 19
|
suprcld |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ℝ ) |
| 21 |
13 16 19 15
|
suprubd |
⊢ ( 𝜑 → 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ) |
| 22 |
|
suprleub |
⊢ ( ( ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑣 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| 23 |
13 16 19 6 22
|
syl31anc |
⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) ) |
| 24 |
17 23
|
mpbird |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) |
| 25 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝑆 , ℝ , < ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( sup ( 𝑆 , ℝ , < ) ∈ ℝ ∧ 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ∧ sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) ) ) |
| 26 |
5 6 25
|
syl2anc |
⊢ ( 𝜑 → ( sup ( 𝑆 , ℝ , < ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( sup ( 𝑆 , ℝ , < ) ∈ ℝ ∧ 𝐴 ≤ sup ( 𝑆 , ℝ , < ) ∧ sup ( 𝑆 , ℝ , < ) ≤ 𝐵 ) ) ) |
| 27 |
20 21 24 26
|
mpbir3and |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 28 |
9 27
|
sseldd |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ , < ) ∈ ∪ 𝑈 ) |
| 29 |
|
eluni2 |
⊢ ( sup ( 𝑆 , ℝ , < ) ∈ ∪ 𝑈 ↔ ∃ 𝑢 ∈ 𝑈 sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) |
| 30 |
28 29
|
sylib |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑈 sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) |
| 31 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝐽 ) |
| 32 |
3
|
rexmet |
⊢ 𝐷 ∈ ( ∞Met ‘ ℝ ) |
| 33 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 34 |
3 33
|
tgioo |
⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ 𝐷 ) |
| 35 |
1 34
|
eqtri |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 36 |
35
|
mopni2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ ) ∧ 𝑢 ∈ 𝐽 ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) |
| 37 |
32 36
|
mp3an1 |
⊢ ( ( 𝑢 ∈ 𝐽 ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑢 ) → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) |
| 38 |
37
|
ex |
⊢ ( 𝑢 ∈ 𝐽 → ( sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) |
| 39 |
31 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) |
| 40 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐴 ∈ ℝ ) |
| 41 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐵 ∈ ℝ ) |
| 42 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐴 ≤ 𝐵 ) |
| 43 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝑈 ⊆ 𝐽 ) |
| 44 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 45 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝑢 ∈ 𝑈 ) |
| 46 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝑤 ∈ ℝ+ ) |
| 47 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) |
| 48 |
|
eqid |
⊢ sup ( 𝑆 , ℝ , < ) = sup ( 𝑆 , ℝ , < ) |
| 49 |
|
eqid |
⊢ if ( ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) ≤ 𝐵 , ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) , 𝐵 ) = if ( ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) ≤ 𝐵 , ( sup ( 𝑆 , ℝ , < ) + ( 𝑤 / 2 ) ) , 𝐵 ) |
| 50 |
1 2 3 4 40 41 42 43 44 45 46 47 48 49
|
icccmplem2 |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 ) ) → 𝐵 ∈ 𝑆 ) |
| 51 |
50
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∃ 𝑤 ∈ ℝ+ ( sup ( 𝑆 , ℝ , < ) ( ball ‘ 𝐷 ) 𝑤 ) ⊆ 𝑢 → 𝐵 ∈ 𝑆 ) ) |
| 52 |
39 51
|
syld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → 𝐵 ∈ 𝑆 ) ) |
| 53 |
52
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝑈 sup ( 𝑆 , ℝ , < ) ∈ 𝑢 → 𝐵 ∈ 𝑆 ) ) |
| 54 |
30 53
|
mpd |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |