Step |
Hyp |
Ref |
Expression |
1 |
|
icccntri.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
icccntri.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
icccntri.3 |
⊢ 𝑅 ∈ ℝ+ |
4 |
|
icccntri.4 |
⊢ ( 𝐴 / 𝑅 ) = 𝐶 |
5 |
|
icccntri.5 |
⊢ ( 𝐵 / 𝑅 ) = 𝐷 |
6 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
7 |
1 2 6
|
mp2an |
⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ |
8 |
7
|
sseli |
⊢ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → 𝑋 ∈ ℝ ) |
9 |
4 5
|
icccntr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+ ) ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 / 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
10 |
1 2 9
|
mpanl12 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 / 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
11 |
3 10
|
mpan2 |
⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 / 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
12 |
11
|
biimpd |
⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑋 / 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
13 |
8 12
|
mpcom |
⊢ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑋 / 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) |