| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccss2 | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 2 | 1 | rgen2 | ⊢ ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 3 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 4 |  | reconn | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ℝ  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  Conn  ↔  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  Conn  ↔  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∀ 𝑦  ∈  ( 𝐴 [,] 𝐵 ) ( 𝑥 [,] 𝑦 )  ⊆  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 6 | 2 5 | mpbiri | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( topGen ‘ ran  (,) )  ↾t  ( 𝐴 [,] 𝐵 ) )  ∈  Conn ) |