Metamath Proof Explorer


Theorem icccvx

Description: A linear combination of two reals lies in the interval between them. Equivalently, a closed interval is a convex set. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion icccvx ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 iccss2 ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )
2 1 adantl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )
3 2 3adantr3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )
4 3 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) )
5 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
6 5 sselda ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ )
7 6 adantrr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐶 ∈ ℝ )
8 5 sselda ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℝ )
9 8 adantrl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐷 ∈ ℝ )
10 7 9 jca ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) )
11 10 3adantr3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) )
12 simpr3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ( 0 [,] 1 ) )
13 11 12 jca ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) )
14 lincmb01cmp ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) )
15 14 ex ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) )
16 15 3expa ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 < 𝐷 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) )
17 16 imp ( ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 < 𝐷 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) )
18 17 an32s ( ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) )
19 13 18 sylan ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) )
20 4 19 sseldd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) )
21 oveq2 ( 𝐶 = 𝐷 → ( ( 1 − 𝑇 ) · 𝐶 ) = ( ( 1 − 𝑇 ) · 𝐷 ) )
22 21 oveq1d ( 𝐶 = 𝐷 → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) )
23 unitssre ( 0 [,] 1 ) ⊆ ℝ
24 23 sseli ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℝ )
25 24 recnd ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℂ )
26 25 ad2antll ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ℂ )
27 8 recnd ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℂ )
28 27 adantrr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝐷 ∈ ℂ )
29 ax-1cn 1 ∈ ℂ
30 npcan ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 )
31 29 30 mpan ( 𝑇 ∈ ℂ → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 )
32 31 adantr ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 )
33 32 oveq1d ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( 1 · 𝐷 ) )
34 subcl ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − 𝑇 ) ∈ ℂ )
35 29 34 mpan ( 𝑇 ∈ ℂ → ( 1 − 𝑇 ) ∈ ℂ )
36 35 ancri ( 𝑇 ∈ ℂ → ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) )
37 adddir ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) )
38 37 3expa ( ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) )
39 36 38 sylan ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) )
40 mulid2 ( 𝐷 ∈ ℂ → ( 1 · 𝐷 ) = 𝐷 )
41 40 adantl ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 1 · 𝐷 ) = 𝐷 )
42 33 39 41 3eqtr3d ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 )
43 26 28 42 syl2anc ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 )
44 43 3adantr1 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 )
45 22 44 sylan9eqr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 )
46 simplr2 ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → 𝐷 ∈ ( 𝐴 [,] 𝐵 ) )
47 45 46 eqeltrd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) )
48 iccss2 ( ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) )
49 48 adantl ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) )
50 49 ancom2s ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) )
51 50 3adantr3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) )
52 51 adantr ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) )
53 9 7 jca ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) )
54 53 3adantr3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) )
55 54 12 jca ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) )
56 iirev ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) )
57 23 56 sselid ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ℝ )
58 57 recnd ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ℂ )
59 recn ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ )
60 mulcl ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ )
61 58 59 60 syl2anr ( ( 𝐶 ∈ ℝ ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ )
62 61 adantll ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ )
63 recn ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ )
64 mulcl ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝑇 · 𝐷 ) ∈ ℂ )
65 25 63 64 syl2anr ( ( 𝐷 ∈ ℝ ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐷 ) ∈ ℂ )
66 65 adantlr ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐷 ) ∈ ℂ )
67 62 66 addcomd ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) )
68 67 3adantl3 ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) )
69 nncan ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 )
70 29 69 mpan ( 𝑇 ∈ ℂ → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 )
71 70 eqcomd ( 𝑇 ∈ ℂ → 𝑇 = ( 1 − ( 1 − 𝑇 ) ) )
72 71 oveq1d ( 𝑇 ∈ ℂ → ( 𝑇 · 𝐷 ) = ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) )
73 72 oveq1d ( 𝑇 ∈ ℂ → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) )
74 25 73 syl ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) )
75 74 adantl ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) )
76 68 75 eqtrd ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) )
77 lincmb01cmp ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ∈ ( 𝐷 [,] 𝐶 ) )
78 56 77 sylan2 ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ∈ ( 𝐷 [,] 𝐶 ) )
79 76 78 eqeltrd ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) )
80 79 ex ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) )
81 80 3expa ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐷 < 𝐶 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) )
82 81 imp ( ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) )
83 82 an32s ( ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) )
84 55 83 sylan ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) )
85 52 84 sseldd ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) )
86 7 9 lttri4d ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶 ) )
87 86 3adantr3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 < 𝐷𝐶 = 𝐷𝐷 < 𝐶 ) )
88 20 47 85 87 mpjao3dan ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) )
89 88 ex ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) )