Step |
Hyp |
Ref |
Expression |
1 |
|
iccss2 |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
3 |
2
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
4 |
3
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
5 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
6 |
5
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
7 |
6
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐶 ∈ ℝ ) |
8 |
5
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℝ ) |
9 |
8
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐷 ∈ ℝ ) |
10 |
7 9
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) |
11 |
10
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) |
12 |
|
simpr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
13 |
11 12
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) |
14 |
|
lincmb01cmp |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
15 |
14
|
ex |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
16 |
15
|
3expa |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 < 𝐷 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 < 𝐷 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
18 |
17
|
an32s |
⊢ ( ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
19 |
13 18
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
20 |
4 19
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
21 |
|
oveq2 |
⊢ ( 𝐶 = 𝐷 → ( ( 1 − 𝑇 ) · 𝐶 ) = ( ( 1 − 𝑇 ) · 𝐷 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝐶 = 𝐷 → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
23 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
24 |
23
|
sseli |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℝ ) |
25 |
24
|
recnd |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℂ ) |
26 |
25
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ℂ ) |
27 |
8
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℂ ) |
28 |
27
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝐷 ∈ ℂ ) |
29 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
30 |
|
npcan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 ) |
31 |
29 30
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 ) |
32 |
31
|
adantr |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 ) |
33 |
32
|
oveq1d |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( 1 · 𝐷 ) ) |
34 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − 𝑇 ) ∈ ℂ ) |
35 |
29 34
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( 1 − 𝑇 ) ∈ ℂ ) |
36 |
35
|
ancri |
⊢ ( 𝑇 ∈ ℂ → ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) ) |
37 |
|
adddir |
⊢ ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
38 |
37
|
3expa |
⊢ ( ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
39 |
36 38
|
sylan |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
40 |
|
mulid2 |
⊢ ( 𝐷 ∈ ℂ → ( 1 · 𝐷 ) = 𝐷 ) |
41 |
40
|
adantl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 1 · 𝐷 ) = 𝐷 ) |
42 |
33 39 41
|
3eqtr3d |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
43 |
26 28 42
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
44 |
43
|
3adantr1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
45 |
22 44
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
46 |
|
simplr2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) |
47 |
45 46
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
48 |
|
iccss2 |
⊢ ( ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
50 |
49
|
ancom2s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
51 |
50
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
52 |
51
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
53 |
9 7
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
54 |
53
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
55 |
54 12
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) |
56 |
|
iirev |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
57 |
23 56
|
sselid |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ℝ ) |
58 |
57
|
recnd |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ℂ ) |
59 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
60 |
|
mulcl |
⊢ ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ ) |
61 |
58 59 60
|
syl2anr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ ) |
62 |
61
|
adantll |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ ) |
63 |
|
recn |
⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) |
64 |
|
mulcl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝑇 · 𝐷 ) ∈ ℂ ) |
65 |
25 63 64
|
syl2anr |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐷 ) ∈ ℂ ) |
66 |
65
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐷 ) ∈ ℂ ) |
67 |
62 66
|
addcomd |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
68 |
67
|
3adantl3 |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
69 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
70 |
29 69
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
71 |
70
|
eqcomd |
⊢ ( 𝑇 ∈ ℂ → 𝑇 = ( 1 − ( 1 − 𝑇 ) ) ) |
72 |
71
|
oveq1d |
⊢ ( 𝑇 ∈ ℂ → ( 𝑇 · 𝐷 ) = ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) ) |
73 |
72
|
oveq1d |
⊢ ( 𝑇 ∈ ℂ → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
74 |
25 73
|
syl |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
75 |
74
|
adantl |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
76 |
68 75
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
77 |
|
lincmb01cmp |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
78 |
56 77
|
sylan2 |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
79 |
76 78
|
eqeltrd |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
80 |
79
|
ex |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) ) |
81 |
80
|
3expa |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐷 < 𝐶 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) ) |
82 |
81
|
imp |
⊢ ( ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
83 |
82
|
an32s |
⊢ ( ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
84 |
55 83
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
85 |
52 84
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
86 |
7 9
|
lttri4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 < 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) |
87 |
86
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 < 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) |
88 |
20 47 85 87
|
mpjao3dan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
89 |
88
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |