Step |
Hyp |
Ref |
Expression |
1 |
|
iccdificc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
iccdificc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
iccdificc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
4 |
|
iccdificc.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐶 ∈ ℝ* ) |
7 |
|
iccssxr |
⊢ ( 𝐴 [,] 𝐶 ) ⊆ ℝ* |
8 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) |
9 |
7 8
|
sselid |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℝ* ) |
11 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝐴 ∈ ℝ* ) |
12 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝐵 ∈ ℝ* ) |
13 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝑥 ∈ ℝ* ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
15 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) |
16 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) → 𝐴 ≤ 𝑥 ) |
17 |
14 6 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐴 ≤ 𝑥 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝐴 ≤ 𝑥 ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → ¬ 𝐵 < 𝑥 ) |
20 |
10 5
|
xrlenltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
22 |
19 21
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝑥 ≤ 𝐵 ) |
23 |
11 12 13 18 22
|
eliccxrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
24 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
25 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
26 |
23 25
|
condan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐵 < 𝑥 ) |
27 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
28 |
14 6 15 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ≤ 𝐶 ) |
29 |
5 6 10 26 28
|
eliocd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
31 |
|
dfss3 |
⊢ ( ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐵 (,] 𝐶 ) ↔ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
32 |
30 31
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐵 (,] 𝐶 ) ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 ∈ ℝ* ) |
34 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
35 |
|
iocssxr |
⊢ ( 𝐵 (,] 𝐶 ) ⊆ ℝ* |
36 |
|
id |
⊢ ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
37 |
35 36
|
sselid |
⊢ ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) → 𝑥 ∈ ℝ* ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ℝ* ) |
39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
40 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 ≤ 𝐵 ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
42 |
|
iocgtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
43 |
39 34 41 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
44 |
33 39 38 40 43
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 < 𝑥 ) |
45 |
33 38 44
|
xrltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 ≤ 𝑥 ) |
46 |
|
iocleub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
47 |
39 34 41 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
48 |
33 34 38 45 47
|
eliccxrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) |
49 |
33 39 38 43
|
xrgtnelicc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
50 |
48 49
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) |
51 |
32 50
|
eqelssd |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 (,] 𝐶 ) ) |