| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccdificc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
iccdificc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
iccdificc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 4 |
|
iccdificc.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐶 ∈ ℝ* ) |
| 7 |
|
iccssxr |
⊢ ( 𝐴 [,] 𝐶 ) ⊆ ℝ* |
| 8 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) |
| 9 |
7 8
|
sselid |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℝ* ) |
| 11 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝐴 ∈ ℝ* ) |
| 12 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝐵 ∈ ℝ* ) |
| 13 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝑥 ∈ ℝ* ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
| 15 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) |
| 16 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) → 𝐴 ≤ 𝑥 ) |
| 17 |
14 6 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐴 ≤ 𝑥 ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝐴 ≤ 𝑥 ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → ¬ 𝐵 < 𝑥 ) |
| 20 |
10 5
|
xrlenltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → ( 𝑥 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑥 ) ) |
| 22 |
19 21
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝑥 ≤ 𝐵 ) |
| 23 |
11 12 13 18 22
|
eliccxrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 24 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 25 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝐵 < 𝑥 ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 |
23 25
|
condan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝐵 < 𝑥 ) |
| 27 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 28 |
14 6 15 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ≤ 𝐶 ) |
| 29 |
5 6 10 26 28
|
eliocd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 31 |
|
dfss3 |
⊢ ( ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐵 (,] 𝐶 ) ↔ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 32 |
30 31
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ( 𝐵 (,] 𝐶 ) ) |
| 33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 ∈ ℝ* ) |
| 34 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
| 35 |
|
iocssxr |
⊢ ( 𝐵 (,] 𝐶 ) ⊆ ℝ* |
| 36 |
|
id |
⊢ ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 37 |
35 36
|
sselid |
⊢ ( 𝑥 ∈ ( 𝐵 (,] 𝐶 ) → 𝑥 ∈ ℝ* ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ℝ* ) |
| 39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
| 40 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 ≤ 𝐵 ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) |
| 42 |
|
iocgtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
| 43 |
39 34 41 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐵 < 𝑥 ) |
| 44 |
33 39 38 40 43
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 < 𝑥 ) |
| 45 |
33 38 44
|
xrltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝐴 ≤ 𝑥 ) |
| 46 |
|
iocleub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 47 |
39 34 41 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) |
| 48 |
33 34 38 45 47
|
eliccxrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ) |
| 49 |
33 39 38 43
|
xrgtnelicc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 50 |
48 49
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,] 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) ) |
| 51 |
32 50
|
eqelssd |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) ∖ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 (,] 𝐶 ) ) |