Step |
Hyp |
Ref |
Expression |
1 |
|
prunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
2 |
1
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
3 |
2
|
difeq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ∖ { 𝐴 , 𝐵 } ) ) |
4 |
|
difun2 |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ∖ { 𝐴 , 𝐵 } ) = ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 , 𝐵 } ) |
5 |
|
iooinlbub |
⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ |
6 |
|
disj3 |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ ↔ ( 𝐴 (,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ) |
7 |
5 6
|
mpbi |
⊢ ( 𝐴 (,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 , 𝐵 } ) |
8 |
4 7
|
eqtr4i |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) |
9 |
3 8
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |
10 |
9
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |
11 |
|
difssd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ¬ 𝐴 ≤ 𝐵 ) |
13 |
|
xrlenlt |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
15 |
12 14
|
mtbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ¬ ¬ 𝐵 < 𝐴 ) |
16 |
15
|
notnotrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 < 𝐴 ) |
17 |
|
icc0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
19 |
16 18
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
20 |
11 19
|
sseqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ⊆ ∅ ) |
21 |
|
ss0 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) ⊆ ∅ → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ∅ ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ∅ ) |
23 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
24 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
25 |
23 24 16
|
xrltled |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 ≤ 𝐴 ) |
26 |
|
ioo0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
28 |
25 27
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
29 |
22 28
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |
30 |
10 29
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐴 , 𝐵 } ) = ( 𝐴 (,) 𝐵 ) ) |