| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccdili.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | iccdili.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | iccdili.3 | ⊢ 𝑅  ∈  ℝ+ | 
						
							| 4 |  | iccdili.4 | ⊢ ( 𝐴  ·  𝑅 )  =  𝐶 | 
						
							| 5 |  | iccdili.5 | ⊢ ( 𝐵  ·  𝑅 )  =  𝐷 | 
						
							| 6 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 7 | 1 2 6 | mp2an | ⊢ ( 𝐴 [,] 𝐵 )  ⊆  ℝ | 
						
							| 8 | 7 | sseli | ⊢ ( 𝑋  ∈  ( 𝐴 [,] 𝐵 )  →  𝑋  ∈  ℝ ) | 
						
							| 9 | 4 5 | iccdil | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝑋  ∈  ℝ  ∧  𝑅  ∈  ℝ+ ) )  →  ( 𝑋  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑋  ·  𝑅 )  ∈  ( 𝐶 [,] 𝐷 ) ) ) | 
						
							| 10 | 1 2 9 | mpanl12 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑋  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑋  ·  𝑅 )  ∈  ( 𝐶 [,] 𝐷 ) ) ) | 
						
							| 11 | 3 10 | mpan2 | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑋  ·  𝑅 )  ∈  ( 𝐶 [,] 𝐷 ) ) ) | 
						
							| 12 | 11 | biimpd | ⊢ ( 𝑋  ∈  ℝ  →  ( 𝑋  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝑋  ·  𝑅 )  ∈  ( 𝐶 [,] 𝐷 ) ) ) | 
						
							| 13 | 8 12 | mpcom | ⊢ ( 𝑋  ∈  ( 𝐴 [,] 𝐵 )  →  ( 𝑋  ·  𝑅 )  ∈  ( 𝐶 [,] 𝐷 ) ) |