Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartiun.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartiun.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
4 |
|
iccelpart |
⊢ ( 𝑀 ∈ ℕ → ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) |
7 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
8 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑀 ) = ( 𝑃 ‘ 𝑀 ) ) |
9 |
7 8
|
oveq12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) = ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) ↔ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑖 ) ) |
12 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
15 |
14
|
rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
16 |
10 15
|
imbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
17 |
16
|
rspcva |
⊢ ( ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
18 |
17
|
adantld |
⊢ ( ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( ( 𝜑 ∧ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
19 |
18
|
com12 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → ( ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ ∀ 𝑝 ∈ ( RePart ‘ 𝑀 ) ( 𝑋 ∈ ( ( 𝑝 ‘ 0 ) [,) ( 𝑝 ‘ 𝑀 ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑝 ‘ 𝑖 ) [,) ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
20 |
3 6 19
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
23 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
25 |
21 22 24
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ) |
26 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
28 |
21 22 27
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
29 |
25 28
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) ) |
30 |
29
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) ) |
31 |
|
elico1 |
⊢ ( ( ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) → ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
33 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
34 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
35 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
37 |
33 34 36
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑗 ) ∈ ℝ* ) |
38 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
40 |
33 34 39
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
41 |
37 40
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) ) |
42 |
41
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) ) |
43 |
|
elico1 |
⊢ ( ( ( 𝑃 ‘ 𝑗 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) → ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) ) |
44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) ) |
45 |
32 44
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) ↔ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
46 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℤ ) |
47 |
46
|
zred |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℝ ) |
48 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℤ ) |
49 |
48
|
zred |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℝ ) |
50 |
47 49
|
anim12i |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) |
52 |
|
lttri4 |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖 ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖 ) ) |
54 |
1 2
|
icceuelpartlem |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) ) ) |
55 |
54
|
imp31 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) |
56 |
|
simpl |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → 𝑋 ∈ ℝ* ) |
57 |
28
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
58 |
57
|
adantl |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
59 |
37
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ 𝑗 ) ∈ ℝ* ) |
60 |
59
|
adantl |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( 𝑃 ‘ 𝑗 ) ∈ ℝ* ) |
61 |
|
nltle2tri |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ∈ ℝ* ) → ¬ ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ) ) |
62 |
56 58 60 61
|
syl3anc |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ¬ ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ) ) |
63 |
62
|
pm2.21d |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ) → 𝑖 = 𝑗 ) ) |
64 |
63
|
3expd |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) → ( ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 → 𝑖 = 𝑗 ) ) ) ) |
65 |
64
|
ex |
⊢ ( 𝑋 ∈ ℝ* → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) → ( ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 → 𝑖 = 𝑗 ) ) ) ) ) |
66 |
65
|
com23 |
⊢ ( 𝑋 ∈ ℝ* → ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) → ( ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 → 𝑖 = 𝑗 ) ) ) ) ) |
67 |
66
|
com25 |
⊢ ( 𝑋 ∈ ℝ* → ( ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → 𝑖 = 𝑗 ) ) ) ) ) |
68 |
67
|
imp4b |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → 𝑖 = 𝑗 ) ) ) |
69 |
68
|
com23 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) ) ) |
70 |
69
|
3adant3 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) ) ) |
71 |
70
|
com12 |
⊢ ( 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) ) ) |
72 |
71
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) ) ) |
73 |
72
|
imp |
⊢ ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) ) |
74 |
73
|
com12 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑗 ) ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
75 |
55 74
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝑖 < 𝑗 ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
76 |
75
|
expcom |
⊢ ( 𝑖 < 𝑗 → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) ) |
77 |
|
2a1 |
⊢ ( 𝑖 = 𝑗 → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) ) |
78 |
1 2
|
icceuelpartlem |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 < 𝑖 → ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) ) |
79 |
78
|
ancomsd |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 < 𝑖 → ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) ) |
80 |
79
|
imp31 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝑗 < 𝑖 ) → ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) |
81 |
40
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
82 |
81
|
adantl |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ) |
83 |
25
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ) |
84 |
83
|
adantl |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ) |
85 |
|
nltle2tri |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ) → ¬ ( 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ) ) |
86 |
56 82 84 85
|
syl3anc |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ¬ ( 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ) ) |
87 |
86
|
pm2.21d |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( ( 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ) → 𝑖 = 𝑗 ) ) |
88 |
87
|
3expd |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) → ( ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) → ( ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 → 𝑖 = 𝑗 ) ) ) ) |
89 |
88
|
ex |
⊢ ( 𝑋 ∈ ℝ* → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) → ( ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) → ( ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 → 𝑖 = 𝑗 ) ) ) ) ) |
90 |
89
|
com23 |
⊢ ( 𝑋 ∈ ℝ* → ( 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) → ( ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 → 𝑖 = 𝑗 ) ) ) ) ) |
91 |
90
|
imp4b |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) → ( ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 → 𝑖 = 𝑗 ) ) ) |
92 |
91
|
com23 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) → 𝑖 = 𝑗 ) ) ) |
93 |
92
|
3adant2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) → 𝑖 = 𝑗 ) ) ) |
94 |
93
|
com12 |
⊢ ( ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) → 𝑖 = 𝑗 ) ) ) |
95 |
94
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) → 𝑖 = 𝑗 ) ) ) |
96 |
95
|
imp |
⊢ ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) → 𝑖 = 𝑗 ) ) |
97 |
96
|
com12 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( 𝑃 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝑃 ‘ 𝑖 ) ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
98 |
80 97
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝑗 < 𝑖 ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
99 |
98
|
expcom |
⊢ ( 𝑗 < 𝑖 → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) ) |
100 |
76 77 99
|
3jaoi |
⊢ ( ( 𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖 ) → ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) ) |
101 |
53 100
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑖 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ( 𝑋 ∈ ℝ* ∧ ( 𝑃 ‘ 𝑗 ) ≤ 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
102 |
45 101
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
103 |
102
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑗 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
104 |
103
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑗 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) |
105 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑗 ) ) |
106 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) |
107 |
105 106
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) |
108 |
107
|
eleq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ↔ 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) ) |
109 |
108
|
reu4 |
⊢ ( ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∀ 𝑗 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑋 ∈ ( ( 𝑃 ‘ 𝑗 ) [,) ( 𝑃 ‘ ( 𝑗 + 1 ) ) ) ) → 𝑖 = 𝑗 ) ) ) |
110 |
20 104 109
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑋 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |