Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartiun.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartiun.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
fveq2 |
⊢ ( ( 𝐼 + 1 ) = 𝐽 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) |
4 |
3
|
olcd |
⊢ ( ( 𝐼 + 1 ) = 𝐽 → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ∨ ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) ) |
5 |
4
|
a1d |
⊢ ( ( 𝐼 + 1 ) = 𝐽 → ( ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ∨ ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) ) ) |
6 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ℤ ) |
7 |
|
elfzoelz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑀 ) → 𝐽 ∈ ℤ ) |
8 |
|
zltp1le |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐼 < 𝐽 ↔ ( 𝐼 + 1 ) ≤ 𝐽 ) ) |
9 |
8
|
biimpcd |
⊢ ( 𝐼 < 𝐽 → ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐼 + 1 ) ≤ 𝐽 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) → ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐼 + 1 ) ≤ 𝐽 ) ) |
11 |
10
|
impcom |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) ) → ( 𝐼 + 1 ) ≤ 𝐽 ) |
12 |
|
df-ne |
⊢ ( ( 𝐼 + 1 ) ≠ 𝐽 ↔ ¬ ( 𝐼 + 1 ) = 𝐽 ) |
13 |
|
necom |
⊢ ( ( 𝐼 + 1 ) ≠ 𝐽 ↔ 𝐽 ≠ ( 𝐼 + 1 ) ) |
14 |
12 13
|
sylbb1 |
⊢ ( ¬ ( 𝐼 + 1 ) = 𝐽 → 𝐽 ≠ ( 𝐼 + 1 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) → 𝐽 ≠ ( 𝐼 + 1 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) ) → 𝐽 ≠ ( 𝐼 + 1 ) ) |
17 |
11 16
|
jca |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) ) → ( ( 𝐼 + 1 ) ≤ 𝐽 ∧ 𝐽 ≠ ( 𝐼 + 1 ) ) ) |
18 |
|
peano2z |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 + 1 ) ∈ ℤ ) |
19 |
18
|
zred |
⊢ ( 𝐼 ∈ ℤ → ( 𝐼 + 1 ) ∈ ℝ ) |
20 |
|
zre |
⊢ ( 𝐽 ∈ ℤ → 𝐽 ∈ ℝ ) |
21 |
19 20
|
anim12i |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( ( 𝐼 + 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) ) → ( ( 𝐼 + 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ) ) |
23 |
|
ltlen |
⊢ ( ( ( 𝐼 + 1 ) ∈ ℝ ∧ 𝐽 ∈ ℝ ) → ( ( 𝐼 + 1 ) < 𝐽 ↔ ( ( 𝐼 + 1 ) ≤ 𝐽 ∧ 𝐽 ≠ ( 𝐼 + 1 ) ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) ) → ( ( 𝐼 + 1 ) < 𝐽 ↔ ( ( 𝐼 + 1 ) ≤ 𝐽 ∧ 𝐽 ≠ ( 𝐼 + 1 ) ) ) ) |
25 |
17 24
|
mpbird |
⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) ) → ( 𝐼 + 1 ) < 𝐽 ) |
26 |
25
|
ex |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) → ( 𝐼 + 1 ) < 𝐽 ) ) |
27 |
6 7 26
|
syl2an |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) → ( 𝐼 + 1 ) < 𝐽 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) → ( 𝐼 + 1 ) < 𝐽 ) ) |
29 |
1 2
|
iccpartgt |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
30 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
31 |
|
elfzofz |
⊢ ( 𝐽 ∈ ( 0 ..^ 𝑀 ) → 𝐽 ∈ ( 0 ... 𝑀 ) ) |
32 |
|
breq1 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( 𝑖 < 𝑗 ↔ ( 𝐼 + 1 ) < 𝑗 ) ) |
33 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
34 |
33
|
breq1d |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑗 ) ) ) |
35 |
32 34
|
imbi12d |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ↔ ( ( 𝐼 + 1 ) < 𝑗 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑗 ) ) ) ) |
36 |
|
breq2 |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 + 1 ) < 𝑗 ↔ ( 𝐼 + 1 ) < 𝐽 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝐽 ) ) |
38 |
37
|
breq2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) ) |
39 |
36 38
|
imbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( ( 𝐼 + 1 ) < 𝑗 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑗 ) ) ↔ ( ( 𝐼 + 1 ) < 𝐽 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) ) ) |
40 |
35 39
|
rspc2v |
⊢ ( ( ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ 𝐽 ∈ ( 0 ... 𝑀 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) → ( ( 𝐼 + 1 ) < 𝐽 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) ) ) |
41 |
30 31 40
|
syl2an |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) → ( ( 𝐼 + 1 ) < 𝐽 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) ) ) |
42 |
29 41
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝐼 + 1 ) < 𝐽 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) ) |
43 |
28 42
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝐼 < 𝐽 ∧ ¬ ( 𝐼 + 1 ) = 𝐽 ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) ) |
44 |
43
|
expdimp |
⊢ ( ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) → ( ¬ ( 𝐼 + 1 ) = 𝐽 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) ) |
45 |
44
|
impcom |
⊢ ( ( ¬ ( 𝐼 + 1 ) = 𝐽 ∧ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ) |
46 |
45
|
orcd |
⊢ ( ( ¬ ( 𝐼 + 1 ) = 𝐽 ∧ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ∨ ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) ) |
47 |
46
|
ex |
⊢ ( ¬ ( 𝐼 + 1 ) = 𝐽 → ( ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ∨ ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) ) ) |
48 |
5 47
|
pm2.61i |
⊢ ( ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ∨ ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) ) |
49 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑀 ∈ ℕ ) |
50 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
51 |
30
|
adantr |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
53 |
49 50 52
|
iccpartxr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
54 |
31
|
adantl |
⊢ ( ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) → 𝐽 ∈ ( 0 ... 𝑀 ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → 𝐽 ∈ ( 0 ... 𝑀 ) ) |
56 |
49 50 55
|
iccpartxr |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ 𝐽 ) ∈ ℝ* ) |
57 |
53 56
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝐽 ) ∈ ℝ* ) ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝐽 ) ∈ ℝ* ) ) |
59 |
|
xrleloe |
⊢ ( ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝐽 ) ∈ ℝ* ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) ≤ ( 𝑃 ‘ 𝐽 ) ↔ ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ∨ ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) ) ) |
60 |
58 59
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) ≤ ( 𝑃 ‘ 𝐽 ) ↔ ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝐽 ) ∨ ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝐽 ) ) ) ) |
61 |
48 60
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ 𝐼 < 𝐽 ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) ≤ ( 𝑃 ‘ 𝐽 ) ) |
62 |
61
|
exp31 |
⊢ ( 𝜑 → ( ( 𝐼 ∈ ( 0 ..^ 𝑀 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 < 𝐽 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) ≤ ( 𝑃 ‘ 𝐽 ) ) ) ) |