Step |
Hyp |
Ref |
Expression |
1 |
|
icchmeo.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
2 |
|
icchmeo.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) |
3 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
5 |
1
|
dfii3 |
⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
6 |
5
|
oveq2i |
⊢ ( II Cn II ) = ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) |
7 |
1
|
cnfldtop |
⊢ 𝐽 ∈ Top |
8 |
|
cnrest2r |
⊢ ( 𝐽 ∈ Top → ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) ) |
9 |
7 8
|
ax-mp |
⊢ ( II Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ⊆ ( II Cn 𝐽 ) |
10 |
6 9
|
eqsstri |
⊢ ( II Cn II ) ⊆ ( II Cn 𝐽 ) |
11 |
4
|
cnmptid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn II ) ) |
12 |
10 11
|
sselid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( II Cn 𝐽 ) ) |
13 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
14 |
13
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
15 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
17 |
4 14 16
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐵 ) ∈ ( II Cn 𝐽 ) ) |
18 |
1
|
mulcn |
⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
19 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
20 |
4 12 17 19
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 · 𝐵 ) ) ∈ ( II Cn 𝐽 ) ) |
21 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 1 ∈ ℂ ) |
22 |
4 14 21
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( II Cn 𝐽 ) ) |
23 |
1
|
subcn |
⊢ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
24 |
23
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
25 |
4 22 12 24
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑥 ) ) ∈ ( II Cn 𝐽 ) ) |
26 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
28 |
4 14 27
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ∈ ( II Cn 𝐽 ) ) |
29 |
4 25 28 19
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑥 ) · 𝐴 ) ) ∈ ( II Cn 𝐽 ) ) |
30 |
1
|
addcn |
⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
31 |
30
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
32 |
4 20 29 31
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑥 · 𝐵 ) + ( ( 1 − 𝑥 ) · 𝐴 ) ) ) ∈ ( II Cn 𝐽 ) ) |
33 |
2 32
|
eqeltrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
34 |
2
|
iccf1o |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) ) |
35 |
34
|
simpld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) ) |
36 |
|
f1of |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
37 |
|
frn |
⊢ ( 𝐹 : ( 0 [,] 1 ) ⟶ ( 𝐴 [,] 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) |
38 |
35 36 37
|
3syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ) |
39 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
40 |
39
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
41 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
42 |
40 41
|
sstrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
43 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran 𝐹 ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) |
44 |
13 38 42 43
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐹 ∈ ( II Cn 𝐽 ) ↔ 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) ) |
45 |
33 44
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
46 |
34
|
simprd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 = ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ) |
47 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
48 |
13 42 47
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
49 |
|
cnrest2r |
⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
50 |
7 49
|
ax-mp |
⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ⊆ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) |
51 |
48
|
cnmptid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
52 |
50 51
|
sselid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝑦 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
53 |
48 14 27
|
cnmptc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐴 ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
54 |
48 52 53 24
|
cnmpt12f |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑦 − 𝐴 ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
55 |
|
difrp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℝ+ ) ) |
56 |
55
|
biimp3a |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ+ ) |
57 |
56
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
58 |
56
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ≠ 0 ) |
59 |
1
|
divccn |
⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
60 |
57 58 59
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / ( 𝐵 − 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
61 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 − 𝐴 ) → ( 𝑥 / ( 𝐵 − 𝐴 ) ) = ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) |
62 |
48 54 14 60 61
|
cnmpt11 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑦 − 𝐴 ) / ( 𝐵 − 𝐴 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
63 |
46 62
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ) |
64 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
65 |
64
|
eqimss2i |
⊢ ran ◡ 𝐹 ⊆ dom 𝐹 |
66 |
|
f1odm |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 𝐴 [,] 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) |
67 |
35 66
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → dom 𝐹 = ( 0 [,] 1 ) ) |
68 |
65 67
|
sseqtrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ) |
69 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
70 |
69
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ⊆ ℝ ) |
71 |
70 41
|
sstrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( 0 [,] 1 ) ⊆ ℂ ) |
72 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ◡ 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) |
73 |
13 68 71 72
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐽 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) ) |
74 |
63 73
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) ) |
75 |
5
|
oveq2i |
⊢ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) = ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐽 ↾t ( 0 [,] 1 ) ) ) |
76 |
74 75
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) |
77 |
|
ishmeo |
⊢ ( 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝐹 ∈ ( II Cn ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn II ) ) ) |
78 |
45 76 77
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( II Homeo ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |