Step |
Hyp |
Ref |
Expression |
1 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
2 |
1
|
anidms |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
3 |
|
xrlenlt |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐴 ) ) |
4 |
|
xrlenlt |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥 ) ) |
6 |
|
xrlttri3 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 = 𝐴 ↔ ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) ) ) |
7 |
6
|
biimprd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) → 𝑥 = 𝐴 ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( ¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥 ) → 𝑥 = 𝐴 ) ) |
9 |
8
|
expcomd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ¬ 𝐴 < 𝑥 → ( ¬ 𝑥 < 𝐴 → 𝑥 = 𝐴 ) ) ) |
10 |
5 9
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ≤ 𝐴 → ( ¬ 𝑥 < 𝐴 → 𝑥 = 𝐴 ) ) ) |
11 |
10
|
com23 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ¬ 𝑥 < 𝐴 → ( 𝑥 ≤ 𝐴 → 𝑥 = 𝐴 ) ) ) |
12 |
3 11
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ≤ 𝑥 → ( 𝑥 ≤ 𝐴 → 𝑥 = 𝐴 ) ) ) |
13 |
12
|
ex |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ℝ* → ( 𝐴 ≤ 𝑥 → ( 𝑥 ≤ 𝐴 → 𝑥 = 𝐴 ) ) ) ) |
14 |
13
|
3impd |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) → 𝑥 = 𝐴 ) ) |
15 |
|
eleq1a |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → 𝑥 ∈ ℝ* ) ) |
16 |
|
xrleid |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) |
17 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴 ) ) |
18 |
16 17
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → 𝐴 ≤ 𝑥 ) ) |
19 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≤ 𝐴 ↔ 𝐴 ≤ 𝐴 ) ) |
20 |
16 19
|
syl5ibrcom |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → 𝑥 ≤ 𝐴 ) ) |
21 |
15 18 20
|
3jcad |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 = 𝐴 → ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
22 |
14 21
|
impbid |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ↔ 𝑥 = 𝐴 ) ) |
23 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
24 |
22 23
|
bitr4di |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ↔ 𝑥 ∈ { 𝐴 } ) ) |
25 |
2 24
|
bitrd |
⊢ ( 𝐴 ∈ ℝ* → ( 𝑥 ∈ ( 𝐴 [,] 𝐴 ) ↔ 𝑥 ∈ { 𝐴 } ) ) |
26 |
25
|
eqrdv |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |