Metamath Proof Explorer


Theorem iccleubd

Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iccleubd.1 ( 𝜑𝐴 ∈ ℝ* )
iccleubd.2 ( 𝜑𝐵 ∈ ℝ* )
iccleubd.3 ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )
Assertion iccleubd ( 𝜑𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 iccleubd.1 ( 𝜑𝐴 ∈ ℝ* )
2 iccleubd.2 ( 𝜑𝐵 ∈ ℝ* )
3 iccleubd.3 ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )
4 iccleub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶𝐵 )
5 1 2 3 4 syl3anc ( 𝜑𝐶𝐵 )