Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | iccmax | ⊢ ( -∞ [,] +∞ ) = ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
3 | iccval | ⊢ ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ [,] +∞ ) = { 𝑥 ∈ ℝ* ∣ ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) } ) | |
4 | 1 2 3 | mp2an | ⊢ ( -∞ [,] +∞ ) = { 𝑥 ∈ ℝ* ∣ ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) } |
5 | rabid2 | ⊢ ( ℝ* = { 𝑥 ∈ ℝ* ∣ ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) } ↔ ∀ 𝑥 ∈ ℝ* ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) | |
6 | mnfle | ⊢ ( 𝑥 ∈ ℝ* → -∞ ≤ 𝑥 ) | |
7 | pnfge | ⊢ ( 𝑥 ∈ ℝ* → 𝑥 ≤ +∞ ) | |
8 | 6 7 | jca | ⊢ ( 𝑥 ∈ ℝ* → ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) |
9 | 5 8 | mprgbir | ⊢ ℝ* = { 𝑥 ∈ ℝ* ∣ ( -∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) } |
10 | 4 9 | eqtr4i | ⊢ ( -∞ [,] +∞ ) = ℝ* |