| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl | ⊢ ( 𝐶  ∈  ℝ  →  - 𝐶  ∈  ℝ ) | 
						
							| 2 |  | ax-1 | ⊢ ( 𝐶  ∈  ℝ  →  ( - 𝐶  ∈  ℝ  →  𝐶  ∈  ℝ ) ) | 
						
							| 3 | 1 2 | impbid2 | ⊢ ( 𝐶  ∈  ℝ  →  ( 𝐶  ∈  ℝ  ↔  - 𝐶  ∈  ℝ ) ) | 
						
							| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ℝ  ↔  - 𝐶  ∈  ℝ ) ) | 
						
							| 5 |  | ancom | ⊢ ( ( 𝐶  ≤  𝐵  ∧  𝐴  ≤  𝐶 )  ↔  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) | 
						
							| 6 |  | leneg | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  ≤  𝐵  ↔  - 𝐵  ≤  - 𝐶 ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ≤  𝐵  ↔  - 𝐵  ≤  - 𝐶 ) ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ≤  𝐵  ↔  - 𝐵  ≤  - 𝐶 ) ) | 
						
							| 9 |  | leneg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  ≤  𝐶  ↔  - 𝐶  ≤  - 𝐴 ) ) | 
						
							| 10 | 9 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  ≤  𝐶  ↔  - 𝐶  ≤  - 𝐴 ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐶  ≤  𝐵  ∧  𝐴  ≤  𝐶 )  ↔  ( - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) | 
						
							| 12 | 5 11 | bitr3id | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  ↔  ( - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) | 
						
							| 13 | 4 12 | anbi12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐶  ∈  ℝ  ∧  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) )  ↔  ( - 𝐶  ∈  ℝ  ∧  ( - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) ) | 
						
							| 14 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 16 |  | 3anass | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 17 | 15 16 | bitrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐶  ∈  ℝ  ∧  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) ) | 
						
							| 18 |  | renegcl | ⊢ ( 𝐵  ∈  ℝ  →  - 𝐵  ∈  ℝ ) | 
						
							| 19 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 20 |  | elicc2 | ⊢ ( ( - 𝐵  ∈  ℝ  ∧  - 𝐴  ∈  ℝ )  →  ( - 𝐶  ∈  ( - 𝐵 [,] - 𝐴 )  ↔  ( - 𝐶  ∈  ℝ  ∧  - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) | 
						
							| 21 | 18 19 20 | syl2anr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( - 𝐶  ∈  ( - 𝐵 [,] - 𝐴 )  ↔  ( - 𝐶  ∈  ℝ  ∧  - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( - 𝐶  ∈  ( - 𝐵 [,] - 𝐴 )  ↔  ( - 𝐶  ∈  ℝ  ∧  - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) | 
						
							| 23 |  | 3anass | ⊢ ( ( - 𝐶  ∈  ℝ  ∧  - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 )  ↔  ( - 𝐶  ∈  ℝ  ∧  ( - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) | 
						
							| 24 | 22 23 | bitrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( - 𝐶  ∈  ( - 𝐵 [,] - 𝐴 )  ↔  ( - 𝐶  ∈  ℝ  ∧  ( - 𝐵  ≤  - 𝐶  ∧  - 𝐶  ≤  - 𝐴 ) ) ) ) | 
						
							| 25 | 13 17 24 | 3bitr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  - 𝐶  ∈  ( - 𝐵 [,] - 𝐴 ) ) ) |