| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icco1.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | icco1.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | icco1.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | icco1.4 | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 5 |  | icco1.5 | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 6 |  | icco1.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  𝐵  ∈  ( 𝑀 [,] 𝑁 ) ) | 
						
							| 7 |  | elicc2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝐵  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑀  ≤  𝐵  ∧  𝐵  ≤  𝑁 ) ) ) | 
						
							| 8 | 4 5 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑀  ≤  𝐵  ∧  𝐵  ≤  𝑁 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  ( 𝐵  ∈  ( 𝑀 [,] 𝑁 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑀  ≤  𝐵  ∧  𝐵  ≤  𝑁 ) ) ) | 
						
							| 10 | 6 9 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  ( 𝐵  ∈  ℝ  ∧  𝑀  ≤  𝐵  ∧  𝐵  ≤  𝑁 ) ) | 
						
							| 11 | 10 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  𝐵  ≤  𝑁 ) | 
						
							| 12 | 1 2 3 5 11 | ello1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1) ) | 
						
							| 13 | 2 | renegcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  - 𝐵  ∈  ℝ ) | 
						
							| 14 | 4 | renegcld | ⊢ ( 𝜑  →  - 𝑀  ∈  ℝ ) | 
						
							| 15 | 10 | simp2d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  𝑀  ≤  𝐵 ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 17 | 2 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 18 | 16 17 | lenegd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  ( 𝑀  ≤  𝐵  ↔  - 𝐵  ≤  - 𝑀 ) ) | 
						
							| 19 | 15 18 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝐶  ≤  𝑥 ) )  →  - 𝐵  ≤  - 𝑀 ) | 
						
							| 20 | 1 13 3 14 19 | ello1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  ≤𝑂(1) ) | 
						
							| 21 | 2 | o1lo1 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1)  ↔  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  ∧  ( 𝑥  ∈  𝐴  ↦  - 𝐵 )  ∈  ≤𝑂(1) ) ) ) | 
						
							| 22 | 12 20 21 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  𝑂(1) ) |