Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
⊢ ( 𝐴 [,] 𝐵 ) = ( [,] ‘ 〈 𝐴 , 𝐵 〉 ) |
2 |
|
letsr |
⊢ ≤ ∈ TosetRel |
3 |
|
ledm |
⊢ ℝ* = dom ≤ |
4 |
3
|
ordtcld3 |
⊢ ( ( ≤ ∈ TosetRel ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) |
5 |
2 4
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) |
6 |
5
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
7 |
|
df-icc |
⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
8 |
7
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ↔ [,] : ( ℝ* × ℝ* ) ⟶ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) |
9 |
6 8
|
mpbi |
⊢ [,] : ( ℝ* × ℝ* ) ⟶ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
10 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
11 |
|
0cld |
⊢ ( ( ordTop ‘ ≤ ) ∈ Top → ∅ ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) ) |
12 |
10 11
|
ax-mp |
⊢ ∅ ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
13 |
9 12
|
f0cli |
⊢ ( [,] ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |
14 |
1 13
|
eqeltri |
⊢ ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) |