Step |
Hyp |
Ref |
Expression |
1 |
|
iccpval |
⊢ ( 𝑀 ∈ ℕ → ( RePart ‘ 𝑀 ) = { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ) |
2 |
1
|
eleq2d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ 𝑃 ∈ { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ) ) |
3 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑖 ) ) |
4 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
5 |
3 4
|
breq12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑝 = 𝑃 → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
7 |
6
|
elrab |
⊢ ( 𝑃 ∈ { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
8 |
2 7
|
bitrdi |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |