Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartiun.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartiun.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
4 |
|
nfreu1 |
⊢ Ⅎ 𝑖 ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
5 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝜑 ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
8 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
9 |
|
0elfz |
⊢ ( 𝑀 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑀 ) ) |
10 |
1 8 9
|
3syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 0 ∈ ( 0 ... 𝑀 ) ) |
12 |
6 7 11
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
13 |
|
nn0fz0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( 0 ... 𝑀 ) ) |
14 |
13
|
biimpi |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
15 |
1 8 14
|
3syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
17 |
6 7 16
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) |
18 |
1 2
|
iccpartgel |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑗 ) ) |
19 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝑖 ) ) |
22 |
21
|
breq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
23 |
22
|
rspcv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑗 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
24 |
20 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑗 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑗 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) ) |
26 |
18 25
|
mpid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
27 |
26
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) |
28 |
1 2
|
iccpartleu |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
29 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
31 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) |
32 |
31
|
breq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑃 ‘ 𝑗 ) ≤ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
33 |
32
|
rspcv |
⊢ ( ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) ≤ ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
34 |
30 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) ≤ ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
35 |
34
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑗 ) ≤ ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) ) |
36 |
28 35
|
mpid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
37 |
36
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
38 |
|
icossico |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ∧ ( 𝑃 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) → ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) |
39 |
12 17 27 37 38
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) |
40 |
39
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → 𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) ) |
41 |
1 2
|
icceuelpart |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( ( 𝑃 ‘ 0 ) [,) ( 𝑃 ‘ 𝑀 ) ) ) → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
42 |
5 40 41
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
44 |
3 4 43
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
45 |
|
rmo5 |
⊢ ( ∃* 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → ∃! 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
46 |
44 45
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
47 |
46
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑝 ∃* 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
48 |
|
df-disj |
⊢ ( Disj 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ↔ ∀ 𝑝 ∃* 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑝 ∈ ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |
49 |
47 48
|
sylibr |
⊢ ( 𝜑 → Disj 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑃 ‘ 𝑖 ) [,) ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) |