Metamath Proof Explorer


Theorem iccpartel

Description: If there is a partition, then all intermediate points and bounds are contained in a closed interval of extended reals. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
Assertion iccpartel ( ( 𝜑𝐼 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃𝐼 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
2 iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
3 1 2 iccpartf ( 𝜑𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )
4 3 ffvelrnda ( ( 𝜑𝐼 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃𝐼 ) ∈ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )