Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
iccpart |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
4 |
|
elmapfn |
⊢ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) → 𝑃 Fn ( 0 ... 𝑀 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → 𝑃 Fn ( 0 ... 𝑀 ) ) |
6 |
3 5
|
syl6bi |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) → 𝑃 Fn ( 0 ... 𝑀 ) ) ) |
7 |
1 2 6
|
sylc |
⊢ ( 𝜑 → 𝑃 Fn ( 0 ... 𝑀 ) ) |
8 |
1 2
|
iccpartrn |
⊢ ( 𝜑 → ran 𝑃 ⊆ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) |
9 |
|
df-f |
⊢ ( 𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ↔ ( 𝑃 Fn ( 0 ... 𝑀 ) ∧ ran 𝑃 ⊆ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) ) |
10 |
7 8 9
|
sylanbrc |
⊢ ( 𝜑 → 𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃 ‘ 𝑀 ) ) ) |