Metamath Proof Explorer


Theorem iccpartf

Description: The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
Assertion iccpartf ( 𝜑𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
2 iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
3 iccpart ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ*m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) )
4 elmapfn ( 𝑃 ∈ ( ℝ*m ( 0 ... 𝑀 ) ) → 𝑃 Fn ( 0 ... 𝑀 ) )
5 4 adantr ( ( 𝑃 ∈ ( ℝ*m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → 𝑃 Fn ( 0 ... 𝑀 ) )
6 3 5 syl6bi ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) → 𝑃 Fn ( 0 ... 𝑀 ) ) )
7 1 2 6 sylc ( 𝜑𝑃 Fn ( 0 ... 𝑀 ) )
8 1 2 iccpartrn ( 𝜑 → ran 𝑃 ⊆ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )
9 df-f ( 𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ↔ ( 𝑃 Fn ( 0 ... 𝑀 ) ∧ ran 𝑃 ⊆ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) ) )
10 7 8 9 sylanbrc ( 𝜑𝑃 : ( 0 ... 𝑀 ) ⟶ ( ( 𝑃 ‘ 0 ) [,] ( 𝑃𝑀 ) ) )