Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
elnn0uz |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
5 |
3 4
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
6 |
|
fzpred |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑀 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) ↔ 𝑖 ∈ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ) ) |
9 |
|
elun |
⊢ ( 𝑖 ∈ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ↔ ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ↔ ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) ) |
11 |
|
velsn |
⊢ ( 𝑖 ∈ { 0 } ↔ 𝑖 = 0 ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ { 0 } ↔ 𝑖 = 0 ) ) |
13 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 0 + 1 ) = 1 ) |
15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) ) |
16 |
15
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ↔ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) |
17 |
12 16
|
orbi12d |
⊢ ( 𝜑 → ( ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) ) |
18 |
8 10 17
|
3bitrd |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) ) |
19 |
|
0elfz |
⊢ ( 𝑀 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑀 ) ) |
20 |
3 19
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
21 |
1 2 20
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
22 |
21
|
xrleidd |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 0 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 0 ) ) |
24 |
23
|
breq2d |
⊢ ( 𝑖 = 0 → ( ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ↔ ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 0 ) ) ) |
25 |
22 24
|
syl5ibr |
⊢ ( 𝑖 = 0 → ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
26 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
29 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
30 |
29
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
31 |
|
elnn0uz |
⊢ ( 1 ∈ ℕ0 ↔ 1 ∈ ( ℤ≥ ‘ 0 ) ) |
32 |
30 31
|
sylib |
⊢ ( 𝜑 → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
33 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
35 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
36 |
27 28 35
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ) |
37 |
1 2
|
iccpartgtl |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) ) |
38 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑖 ) ) |
39 |
38
|
breq2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
40 |
39
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
41 |
37 40
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
42 |
41
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
43 |
26 36 42
|
xrltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) |
44 |
43
|
expcom |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
45 |
25 44
|
jaoi |
⊢ ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
46 |
45
|
com12 |
⊢ ( 𝜑 → ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
47 |
18 46
|
sylbid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) ) |
48 |
47
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 𝑖 ) ) |