Metamath Proof Explorer


Theorem iccpartgel

Description: If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
Assertion iccpartgel ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) )

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m ( 𝜑𝑀 ∈ ℕ )
2 iccpartgtprec.p ( 𝜑𝑃 ∈ ( RePart ‘ 𝑀 ) )
3 1 nnnn0d ( 𝜑𝑀 ∈ ℕ0 )
4 elnn0uz ( 𝑀 ∈ ℕ0𝑀 ∈ ( ℤ ‘ 0 ) )
5 3 4 sylib ( 𝜑𝑀 ∈ ( ℤ ‘ 0 ) )
6 fzpred ( 𝑀 ∈ ( ℤ ‘ 0 ) → ( 0 ... 𝑀 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) )
7 5 6 syl ( 𝜑 → ( 0 ... 𝑀 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) )
8 7 eleq2d ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) ↔ 𝑖 ∈ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ) )
9 elun ( 𝑖 ∈ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ↔ ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) )
10 9 a1i ( 𝜑 → ( 𝑖 ∈ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ↔ ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) )
11 velsn ( 𝑖 ∈ { 0 } ↔ 𝑖 = 0 )
12 11 a1i ( 𝜑 → ( 𝑖 ∈ { 0 } ↔ 𝑖 = 0 ) )
13 0p1e1 ( 0 + 1 ) = 1
14 13 a1i ( 𝜑 → ( 0 + 1 ) = 1 )
15 14 oveq1d ( 𝜑 → ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) )
16 15 eleq2d ( 𝜑 → ( 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ↔ 𝑖 ∈ ( 1 ... 𝑀 ) ) )
17 12 16 orbi12d ( 𝜑 → ( ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) )
18 8 10 17 3bitrd ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) )
19 0elfz ( 𝑀 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑀 ) )
20 3 19 syl ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) )
21 1 2 20 iccpartxr ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ℝ* )
22 21 xrleidd ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 0 ) )
23 fveq2 ( 𝑖 = 0 → ( 𝑃𝑖 ) = ( 𝑃 ‘ 0 ) )
24 23 breq2d ( 𝑖 = 0 → ( ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ↔ ( 𝑃 ‘ 0 ) ≤ ( 𝑃 ‘ 0 ) ) )
25 22 24 syl5ibr ( 𝑖 = 0 → ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
26 21 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ∈ ℝ* )
27 1 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℕ )
28 2 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) )
29 1nn0 1 ∈ ℕ0
30 29 a1i ( 𝜑 → 1 ∈ ℕ0 )
31 elnn0uz ( 1 ∈ ℕ0 ↔ 1 ∈ ( ℤ ‘ 0 ) )
32 30 31 sylib ( 𝜑 → 1 ∈ ( ℤ ‘ 0 ) )
33 fzss1 ( 1 ∈ ( ℤ ‘ 0 ) → ( 1 ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) )
34 32 33 syl ( 𝜑 → ( 1 ... 𝑀 ) ⊆ ( 0 ... 𝑀 ) )
35 34 sselda ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
36 27 28 35 iccpartxr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃𝑖 ) ∈ ℝ* )
37 1 2 iccpartgtl ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃𝑘 ) )
38 fveq2 ( 𝑘 = 𝑖 → ( 𝑃𝑘 ) = ( 𝑃𝑖 ) )
39 38 breq2d ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 0 ) < ( 𝑃𝑘 ) ↔ ( 𝑃 ‘ 0 ) < ( 𝑃𝑖 ) ) )
40 39 rspccv ( ∀ 𝑘 ∈ ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃𝑖 ) ) )
41 37 40 syl ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃𝑖 ) ) )
42 41 imp ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) < ( 𝑃𝑖 ) )
43 26 36 42 xrltled ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) )
44 43 expcom ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
45 25 44 jaoi ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
46 45 com12 ( 𝜑 → ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
47 18 46 sylbid ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) ) )
48 47 ralrimiv ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 0 ) ≤ ( 𝑃𝑖 ) )