Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
elnn0uz |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
5 |
3 4
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
6 |
|
fzpred |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑀 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) ) |
8 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
9 |
8
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) ) |
11 |
10
|
uneq2d |
⊢ ( 𝜑 → ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑀 ) ) = ( { 0 } ∪ ( 1 ... 𝑀 ) ) ) |
12 |
7 11
|
eqtrd |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) = ( { 0 } ∪ ( 1 ... 𝑀 ) ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) ↔ 𝑖 ∈ ( { 0 } ∪ ( 1 ... 𝑀 ) ) ) ) |
14 |
|
elun |
⊢ ( 𝑖 ∈ ( { 0 } ∪ ( 1 ... 𝑀 ) ) ↔ ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) |
15 |
|
velsn |
⊢ ( 𝑖 ∈ { 0 } ↔ 𝑖 = 0 ) |
16 |
15
|
orbi1i |
⊢ ( ( 𝑖 ∈ { 0 } ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) |
17 |
14 16
|
bitri |
⊢ ( 𝑖 ∈ ( { 0 } ∪ ( 1 ... 𝑀 ) ) ↔ ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) ) |
18 |
|
fzisfzounsn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑀 ) = ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) = ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ) |
20 |
19
|
eleq2d |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ... 𝑀 ) ↔ 𝑗 ∈ ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ) ) |
21 |
|
elun |
⊢ ( 𝑗 ∈ ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 ∈ { 𝑀 } ) ) |
22 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑀 } ↔ 𝑗 = 𝑀 ) |
23 |
22
|
orbi2i |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 ∈ { 𝑀 } ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) ) |
24 |
21 23
|
bitri |
⊢ ( 𝑗 ∈ ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) ) |
25 |
20 24
|
bitrdi |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) ) ) |
26 |
|
simpl |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 0 < 𝑗 ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
27 |
|
simpr |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 0 < 𝑗 ) → 0 < 𝑗 ) |
28 |
27
|
gt0ne0d |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 0 < 𝑗 ) → 𝑗 ≠ 0 ) |
29 |
|
fzo1fzo0n0 |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ≠ 0 ) ) |
30 |
26 28 29
|
sylanbrc |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 0 < 𝑗 ) → 𝑗 ∈ ( 1 ..^ 𝑀 ) ) |
31 |
1 2
|
iccpartigtl |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑗 ) ) |
33 |
32
|
breq2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
34 |
33
|
rspcv |
⊢ ( 𝑗 ∈ ( 1 ..^ 𝑀 ) → ( ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
35 |
30 31 34
|
syl2imc |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 0 < 𝑗 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
36 |
35
|
expd |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 0 < 𝑗 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) |
37 |
36
|
impcom |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝜑 ) → ( 0 < 𝑗 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
38 |
|
breq1 |
⊢ ( 𝑖 = 0 → ( 𝑖 < 𝑗 ↔ 0 < 𝑗 ) ) |
39 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 0 ) ) |
40 |
39
|
breq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
41 |
38 40
|
imbi12d |
⊢ ( 𝑖 = 0 → ( ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ↔ ( 0 < 𝑗 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) |
42 |
37 41
|
syl5ibr |
⊢ ( 𝑖 = 0 → ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝜑 ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) |
43 |
42
|
expd |
⊢ ( 𝑖 = 0 → ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
44 |
43
|
com12 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 = 0 → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
45 |
1 2
|
iccpartlt |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) |
46 |
|
fveq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 𝑀 ) ) |
47 |
39 46
|
breqan12rd |
⊢ ( ( 𝑗 = 𝑀 ∧ 𝑖 = 0 ) → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
48 |
45 47
|
syl5ibr |
⊢ ( ( 𝑗 = 𝑀 ∧ 𝑖 = 0 ) → ( 𝜑 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
49 |
48
|
a1dd |
⊢ ( ( 𝑗 = 𝑀 ∧ 𝑖 = 0 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) |
50 |
49
|
ex |
⊢ ( 𝑗 = 𝑀 → ( 𝑖 = 0 → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
51 |
44 50
|
jaoi |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) → ( 𝑖 = 0 → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
52 |
51
|
com12 |
⊢ ( 𝑖 = 0 → ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
53 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ℤ ) |
54 |
53
|
ad3antlr |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → 𝑖 ∈ ℤ ) |
55 |
53
|
peano2zd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑖 + 1 ) ∈ ℤ ) |
56 |
55
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 + 1 ) ∈ ℤ ) |
57 |
|
elfzoelz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℤ ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ℤ ) |
59 |
|
simpr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 ) |
60 |
57 53
|
anim12ci |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) |
62 |
|
zltp1le |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 < 𝑗 ↔ ( 𝑖 + 1 ) ≤ 𝑗 ) ) |
63 |
61 62
|
syl |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 < 𝑗 ↔ ( 𝑖 + 1 ) ≤ 𝑗 ) ) |
64 |
59 63
|
mpbid |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 + 1 ) ≤ 𝑗 ) |
65 |
56 58 64
|
3jca |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ( 𝑖 + 1 ) ≤ 𝑗 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → ( ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ( 𝑖 + 1 ) ≤ 𝑗 ) ) |
67 |
|
eluz2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ↔ ( ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ( 𝑖 + 1 ) ≤ 𝑗 ) ) |
68 |
66 67
|
sylibr |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) |
69 |
1
|
ad2antlr |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑀 ∈ ℕ ) |
70 |
2
|
ad2antlr |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
71 |
|
1zzd |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 1 ∈ ℤ ) |
72 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 𝑘 ∈ ℤ ) |
73 |
72
|
adantl |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑘 ∈ ℤ ) |
74 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 1 ≤ 𝑖 ) |
75 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 𝑖 ≤ 𝑘 ) |
76 |
|
1red |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 1 ∈ ℝ ) |
77 |
|
elfzel1 |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 𝑖 ∈ ℤ ) |
78 |
77
|
zred |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 𝑖 ∈ ℝ ) |
79 |
72
|
zred |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 𝑘 ∈ ℝ ) |
80 |
|
letr |
⊢ ( ( 1 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘 ) → 1 ≤ 𝑘 ) ) |
81 |
76 78 79 80
|
syl3anc |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → ( ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘 ) → 1 ≤ 𝑘 ) ) |
82 |
75 81
|
mpan2d |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → ( 1 ≤ 𝑖 → 1 ≤ 𝑘 ) ) |
83 |
74 82
|
syl5com |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 1 ≤ 𝑘 ) ) |
84 |
83
|
ad3antlr |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 1 ≤ 𝑘 ) ) |
85 |
84
|
imp |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 1 ≤ 𝑘 ) |
86 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤ 𝑘 ) ) |
87 |
71 73 85 86
|
syl3anbrc |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
88 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
89 |
88
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑀 ∈ ℤ ) |
90 |
89
|
ad2antrr |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑀 ∈ ℤ ) |
91 |
79
|
adantl |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑘 ∈ ℝ ) |
92 |
57
|
zred |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ℝ ) |
93 |
92
|
ad4antr |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑗 ∈ ℝ ) |
94 |
69
|
nnred |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑀 ∈ ℝ ) |
95 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑗 ) → 𝑘 ≤ 𝑗 ) |
96 |
95
|
adantl |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑘 ≤ 𝑗 ) |
97 |
|
elfzolt2 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 < 𝑀 ) |
98 |
97
|
ad4antr |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑗 < 𝑀 ) |
99 |
91 93 94 96 98
|
lelttrd |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑘 < 𝑀 ) |
100 |
|
elfzo2 |
⊢ ( 𝑘 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑘 < 𝑀 ) ) |
101 |
87 90 99 100
|
syl3anbrc |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) |
102 |
69 70 101
|
iccpartipre |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑗 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) |
103 |
1
|
ad2antlr |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑗 − 1 ) ) ) → 𝑀 ∈ ℕ ) |
104 |
2
|
ad2antlr |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑗 − 1 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
105 |
57
|
ad3antrrr |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → 𝑗 ∈ ℤ ) |
106 |
|
fzoval |
⊢ ( 𝑗 ∈ ℤ → ( 𝑖 ..^ 𝑗 ) = ( 𝑖 ... ( 𝑗 − 1 ) ) ) |
107 |
105 106
|
syl |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → ( 𝑖 ..^ 𝑗 ) = ( 𝑖 ... ( 𝑗 − 1 ) ) ) |
108 |
|
elfzo0le |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ≤ 𝑀 ) |
109 |
|
0le1 |
⊢ 0 ≤ 1 |
110 |
|
0red |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 0 ∈ ℝ ) |
111 |
|
1red |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 1 ∈ ℝ ) |
112 |
53
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ℝ ) |
113 |
|
letr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( ( 0 ≤ 1 ∧ 1 ≤ 𝑖 ) → 0 ≤ 𝑖 ) ) |
114 |
110 111 112 113
|
syl3anc |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( ( 0 ≤ 1 ∧ 1 ≤ 𝑖 ) → 0 ≤ 𝑖 ) ) |
115 |
109 114
|
mpani |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 1 ≤ 𝑖 → 0 ≤ 𝑖 ) ) |
116 |
74 115
|
mpd |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 0 ≤ 𝑖 ) |
117 |
108 116
|
anim12ci |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀 ) ) |
118 |
117
|
adantr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀 ) ) |
119 |
|
0zd |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 0 ∈ ℤ ) |
120 |
|
elfzoel2 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
121 |
119 120
|
jca |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
122 |
121
|
ad2antrr |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
123 |
|
ssfzo12bi |
⊢ ( ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ 𝑖 < 𝑗 ) → ( ( 𝑖 ..^ 𝑗 ) ⊆ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀 ) ) ) |
124 |
61 122 59 123
|
syl3anc |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( ( 𝑖 ..^ 𝑗 ) ⊆ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑖 ∧ 𝑗 ≤ 𝑀 ) ) ) |
125 |
118 124
|
mpbird |
⊢ ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 ..^ 𝑗 ) ⊆ ( 0 ..^ 𝑀 ) ) |
126 |
125
|
adantr |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → ( 𝑖 ..^ 𝑗 ) ⊆ ( 0 ..^ 𝑀 ) ) |
127 |
107 126
|
eqsstrrd |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → ( 𝑖 ... ( 𝑗 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) ) |
128 |
127
|
sselda |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑗 − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
129 |
|
iccpartimp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
130 |
103 104 128 129
|
syl3anc |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑗 − 1 ) ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
131 |
130
|
simprd |
⊢ ( ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑗 − 1 ) ) ) → ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
132 |
54 68 102 131
|
smonoord |
⊢ ( ( ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝜑 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) |
133 |
132
|
exp31 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑖 < 𝑗 → ( 𝜑 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) |
134 |
133
|
com23 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) |
135 |
134
|
ex |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
136 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
137 |
136
|
adantr |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑖 < 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
138 |
88
|
adantr |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑖 < 𝑀 ) → 𝑀 ∈ ℤ ) |
139 |
|
simpr |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑖 < 𝑀 ) → 𝑖 < 𝑀 ) |
140 |
|
elfzo2 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) |
141 |
137 138 139 140
|
syl3anbrc |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑖 < 𝑀 ) → 𝑖 ∈ ( 1 ..^ 𝑀 ) ) |
142 |
1 2
|
iccpartiltu |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ 𝑀 ) ) |
143 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑖 ) ) |
144 |
143
|
breq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
145 |
144
|
rspcv |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ 𝑀 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
146 |
141 142 145
|
syl2imc |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑖 < 𝑀 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
147 |
146
|
expd |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑖 < 𝑀 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) |
148 |
147
|
impcom |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝜑 ) → ( 𝑖 < 𝑀 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
149 |
148
|
imp |
⊢ ( ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 < 𝑀 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
150 |
149
|
a1i |
⊢ ( 𝑗 = 𝑀 → ( ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 < 𝑀 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
151 |
|
breq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑖 < 𝑗 ↔ 𝑖 < 𝑀 ) ) |
152 |
151
|
anbi2d |
⊢ ( 𝑗 = 𝑀 → ( ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 < 𝑗 ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 < 𝑀 ) ) ) |
153 |
46
|
breq2d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
154 |
150 152 153
|
3imtr4d |
⊢ ( 𝑗 = 𝑀 → ( ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 < 𝑗 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
155 |
154
|
exp4c |
⊢ ( 𝑗 = 𝑀 → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
156 |
135 155
|
jaoi |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
157 |
156
|
com12 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
158 |
52 157
|
jaoi |
⊢ ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) → ( 𝜑 → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
159 |
158
|
com13 |
⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑗 = 𝑀 ) → ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
160 |
25 159
|
sylbid |
⊢ ( 𝜑 → ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
161 |
160
|
com3r |
⊢ ( ( 𝑖 = 0 ∨ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 → ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
162 |
17 161
|
sylbi |
⊢ ( 𝑖 ∈ ( { 0 } ∪ ( 1 ... 𝑀 ) ) → ( 𝜑 → ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
163 |
162
|
com12 |
⊢ ( 𝜑 → ( 𝑖 ∈ ( { 0 } ∪ ( 1 ... 𝑀 ) ) → ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
164 |
13 163
|
sylbid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) ) ) |
165 |
164
|
imp32 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) → ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) |
166 |
165
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑗 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑗 ) ) ) |