Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
4 |
1 3
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
5 |
|
fzisfzounsn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... 𝑀 ) = ( ( 1 ..^ 𝑀 ) ∪ { 𝑀 } ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) = ( ( 1 ..^ 𝑀 ) ∪ { 𝑀 } ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ 𝑖 ∈ ( ( 1 ..^ 𝑀 ) ∪ { 𝑀 } ) ) ) |
8 |
|
elun |
⊢ ( 𝑖 ∈ ( ( 1 ..^ 𝑀 ) ∪ { 𝑀 } ) ↔ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∨ 𝑖 ∈ { 𝑀 } ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ( 1 ..^ 𝑀 ) ∪ { 𝑀 } ) ↔ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∨ 𝑖 ∈ { 𝑀 } ) ) ) |
10 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝑀 } ↔ 𝑖 = 𝑀 ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ { 𝑀 } ↔ 𝑖 = 𝑀 ) ) |
12 |
11
|
orbi2d |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∨ 𝑖 ∈ { 𝑀 } ) ↔ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) ) ) |
13 |
7 9 12
|
3bitrd |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑖 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
16 |
15
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) → ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
17 |
1 2
|
iccpartigtl |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑘 ) ) |
18 |
16 17
|
syl11 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
19 |
1 2
|
iccpartlt |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑖 = 𝑀 ∧ 𝜑 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑀 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑀 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑖 = 𝑀 ∧ 𝜑 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑀 ) ) |
23 |
20 22
|
breqtrrd |
⊢ ( ( 𝑖 = 𝑀 ∧ 𝜑 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
24 |
23
|
ex |
⊢ ( 𝑖 = 𝑀 → ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
25 |
18 24
|
jaoi |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) → ( 𝜑 → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
26 |
25
|
com12 |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
27 |
13 26
|
sylbid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
28 |
27
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |