Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
iccpartgtprec.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑀 ) ) |
4 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
fzval3 |
⊢ ( 𝑀 ∈ ℤ → ( 1 ... 𝑀 ) = ( 1 ..^ ( 𝑀 + 1 ) ) ) |
6 |
5
|
eleq2d |
⊢ ( 𝑀 ∈ ℤ → ( 𝐼 ∈ ( 1 ... 𝑀 ) ↔ 𝐼 ∈ ( 1 ..^ ( 𝑀 + 1 ) ) ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ... 𝑀 ) ↔ 𝐼 ∈ ( 1 ..^ ( 𝑀 + 1 ) ) ) ) |
8 |
3 7
|
mpbid |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ..^ ( 𝑀 + 1 ) ) ) |
9 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
10 |
|
pncan1 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → 𝑀 = ( ( 𝑀 + 1 ) − 1 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ 𝑀 ) = ( 0 ..^ ( ( 𝑀 + 1 ) − 1 ) ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝐼 − 1 ) ∈ ( 0 ..^ ( ( 𝑀 + 1 ) − 1 ) ) ) ) |
15 |
3
|
elfzelzd |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
16 |
4
|
peano2zd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
17 |
|
elfzom1b |
⊢ ( ( 𝐼 ∈ ℤ ∧ ( 𝑀 + 1 ) ∈ ℤ ) → ( 𝐼 ∈ ( 1 ..^ ( 𝑀 + 1 ) ) ↔ ( 𝐼 − 1 ) ∈ ( 0 ..^ ( ( 𝑀 + 1 ) − 1 ) ) ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ..^ ( 𝑀 + 1 ) ) ↔ ( 𝐼 − 1 ) ∈ ( 0 ..^ ( ( 𝑀 + 1 ) − 1 ) ) ) ) |
19 |
14 18
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝑀 ) ↔ 𝐼 ∈ ( 1 ..^ ( 𝑀 + 1 ) ) ) ) |
20 |
8 19
|
mpbird |
⊢ ( 𝜑 → ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
21 |
|
iccpartimp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ ( 𝐼 − 1 ) ) < ( 𝑃 ‘ ( ( 𝐼 − 1 ) + 1 ) ) ) ) |
22 |
1 2 20 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ ( 𝐼 − 1 ) ) < ( 𝑃 ‘ ( ( 𝐼 − 1 ) + 1 ) ) ) ) |
23 |
22
|
simprd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝐼 − 1 ) ) < ( 𝑃 ‘ ( ( 𝐼 − 1 ) + 1 ) ) ) |
24 |
15
|
zcnd |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
25 |
|
npcan1 |
⊢ ( 𝐼 ∈ ℂ → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
27 |
26
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( ( 𝐼 − 1 ) + 1 ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) = ( 𝑃 ‘ ( ( 𝐼 − 1 ) + 1 ) ) ) |
29 |
23 28
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝐼 − 1 ) ) < ( 𝑃 ‘ 𝐼 ) ) |