| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 3 |
|
ral0 |
⊢ ∀ 𝑖 ∈ ∅ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) |
| 4 |
|
oveq2 |
⊢ ( 𝑀 = 1 → ( 1 ..^ 𝑀 ) = ( 1 ..^ 1 ) ) |
| 5 |
|
fzo0 |
⊢ ( 1 ..^ 1 ) = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝑀 = 1 → ( 1 ..^ 𝑀 ) = ∅ ) |
| 7 |
6
|
raleqdv |
⊢ ( 𝑀 = 1 → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ∅ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 8 |
3 7
|
mpbiri |
⊢ ( 𝑀 = 1 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
| 9 |
8
|
a1d |
⊢ ( 𝑀 = 1 → ( 𝜑 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 10 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 11 |
|
0elfz |
⊢ ( 𝑀 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 13 |
1 2 12
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( 𝑃 ‘ 0 ) ∈ ℝ* ) |
| 15 |
|
elxr |
⊢ ( ( 𝑃 ‘ 0 ) ∈ ℝ* ↔ ( ( 𝑃 ‘ 0 ) ∈ ℝ ∨ ( 𝑃 ‘ 0 ) = +∞ ∨ ( 𝑃 ‘ 0 ) = -∞ ) ) |
| 16 |
|
0zd |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 0 ∈ ℤ ) |
| 17 |
|
elfzouz |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 18 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 19 |
18
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 20 |
17 19
|
eleqtrrdi |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) |
| 23 |
22
|
eqcomd |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 0 ) ∈ ℝ ↔ ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 25 |
24
|
biimpcd |
⊢ ( ( 𝑃 ‘ 0 ) ∈ ℝ → ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 26 |
25
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) ) ) → 𝑀 ∈ ℕ ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 29 |
|
elfz2nn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑖 ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) ) |
| 30 |
|
elfzo2 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) |
| 31 |
|
simpl1 |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 32 |
|
simpr2 |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 33 |
|
nn0ge0 |
⊢ ( 𝑖 ∈ ℕ0 → 0 ≤ 𝑖 ) |
| 34 |
|
0red |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → 0 ∈ ℝ ) |
| 35 |
|
eluzelre |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → 𝑖 ∈ ℝ ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → 𝑖 ∈ ℝ ) |
| 37 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 39 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) → 0 < 𝑀 ) ) |
| 40 |
34 36 38 39
|
syl3anc |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → ( ( 0 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) → 0 < 𝑀 ) ) |
| 41 |
40
|
expcomd |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑖 < 𝑀 → ( 0 ≤ 𝑖 → 0 < 𝑀 ) ) ) |
| 42 |
41
|
3impia |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → ( 0 ≤ 𝑖 → 0 < 𝑀 ) ) |
| 43 |
33 42
|
syl5com |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → 0 < 𝑀 ) ) |
| 44 |
43
|
3ad2ant2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) → ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → 0 < 𝑀 ) ) |
| 45 |
44
|
imp |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) → 0 < 𝑀 ) |
| 46 |
|
elnnz |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) |
| 47 |
32 45 46
|
sylanbrc |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) → 𝑀 ∈ ℕ ) |
| 48 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 49 |
48
|
ad2antrl |
⊢ ( ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) → 𝑘 ∈ ℝ ) |
| 50 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℝ ) |
| 52 |
51
|
adantl |
⊢ ( ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) → 𝑖 ∈ ℝ ) |
| 53 |
38
|
adantr |
⊢ ( ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) → 𝑀 ∈ ℝ ) |
| 54 |
|
lelttr |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 𝑘 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) → 𝑘 < 𝑀 ) ) |
| 55 |
54
|
expd |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑘 ≤ 𝑖 → ( 𝑖 < 𝑀 → 𝑘 < 𝑀 ) ) ) |
| 56 |
49 52 53 55
|
syl3anc |
⊢ ( ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) ) → ( 𝑘 ≤ 𝑖 → ( 𝑖 < 𝑀 → 𝑘 < 𝑀 ) ) ) |
| 57 |
56
|
exp31 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ∈ ℤ → ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑘 ≤ 𝑖 → ( 𝑖 < 𝑀 → 𝑘 < 𝑀 ) ) ) ) ) |
| 58 |
57
|
com34 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ∈ ℤ → ( 𝑘 ≤ 𝑖 → ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 < 𝑀 → 𝑘 < 𝑀 ) ) ) ) ) |
| 59 |
58
|
com35 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ∈ ℤ → ( 𝑖 < 𝑀 → ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑘 ≤ 𝑖 → 𝑘 < 𝑀 ) ) ) ) ) |
| 60 |
59
|
3imp |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑘 ≤ 𝑖 → 𝑘 < 𝑀 ) ) ) |
| 61 |
60
|
expdcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑖 ∈ ℕ0 → ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → ( 𝑘 ≤ 𝑖 → 𝑘 < 𝑀 ) ) ) ) |
| 62 |
61
|
com34 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑖 ∈ ℕ0 → ( 𝑘 ≤ 𝑖 → ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → 𝑘 < 𝑀 ) ) ) ) |
| 63 |
62
|
3imp1 |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) → 𝑘 < 𝑀 ) |
| 64 |
|
elfzo0 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝑘 < 𝑀 ) ) |
| 65 |
31 47 63 64
|
syl3anbrc |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) ∧ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 66 |
65
|
ex |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) → ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 67 |
30 66
|
biimtrid |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑖 ∈ ℕ0 ∧ 𝑘 ≤ 𝑖 ) → ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 68 |
29 67
|
sylbi |
⊢ ( 𝑘 ∈ ( 0 ... 𝑖 ) → ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) → ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 70 |
69
|
impcom |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 71 |
|
simpr |
⊢ ( ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) → 𝑘 ≠ 0 ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) ) → 𝑘 ≠ 0 ) |
| 73 |
|
fzo1fzo0n0 |
⊢ ( 𝑘 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑘 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑘 ≠ 0 ) ) |
| 74 |
70 72 73
|
sylanbrc |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) ) ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) |
| 76 |
27 28 75
|
iccpartipre |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) |
| 77 |
76
|
exp32 |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) ) |
| 78 |
77
|
ad2antrl |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) ) |
| 79 |
78
|
imp |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( ( 𝑘 ∈ ( 0 ... 𝑖 ) ∧ 𝑘 ≠ 0 ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 80 |
79
|
expdimp |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑘 ≠ 0 → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 81 |
26 80
|
pm2.61dne |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑖 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) |
| 82 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 𝑀 ∈ ℕ ) |
| 83 |
82
|
ad3antlr |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑀 ∈ ℕ ) |
| 84 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 85 |
84
|
ad3antlr |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 86 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑖 ∈ ℤ ) |
| 87 |
86
|
adantl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑖 ∈ ℤ ) |
| 88 |
|
fzoval |
⊢ ( 𝑖 ∈ ℤ → ( 0 ..^ 𝑖 ) = ( 0 ... ( 𝑖 − 1 ) ) ) |
| 89 |
88
|
eqcomd |
⊢ ( 𝑖 ∈ ℤ → ( 0 ... ( 𝑖 − 1 ) ) = ( 0 ..^ 𝑖 ) ) |
| 90 |
87 89
|
syl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 0 ... ( 𝑖 − 1 ) ) = ( 0 ..^ 𝑖 ) ) |
| 91 |
90
|
eleq2d |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑘 ∈ ( 0 ... ( 𝑖 − 1 ) ) ↔ 𝑘 ∈ ( 0 ..^ 𝑖 ) ) ) |
| 92 |
|
elfzouz2 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 93 |
92
|
adantl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 94 |
|
fzoss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑖 ) → ( 0 ..^ 𝑖 ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 95 |
93 94
|
syl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 0 ..^ 𝑖 ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 96 |
95
|
sseld |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑘 ∈ ( 0 ..^ 𝑖 ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 97 |
91 96
|
sylbid |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑘 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 98 |
97
|
imp |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 99 |
|
iccpartimp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 100 |
83 85 98 99
|
syl3anc |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 101 |
100
|
simprd |
⊢ ( ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ∧ 𝑘 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 102 |
16 21 81 101
|
smonoord |
⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
| 103 |
102
|
ralrimiva |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
| 104 |
103
|
ex |
⊢ ( ( 𝑃 ‘ 0 ) ∈ ℝ → ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 105 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑀 ∈ ℕ ) |
| 106 |
1 105
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑀 ) ) |
| 107 |
1 2 106
|
3jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 108 |
107
|
ad2antrl |
⊢ ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 109 |
108
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 110 |
|
iccpartimp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 0 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ) ) |
| 111 |
109 110
|
syl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ) ) |
| 112 |
111
|
simprd |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ) |
| 113 |
|
breq1 |
⊢ ( ( 𝑃 ‘ 0 ) = +∞ → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ↔ +∞ < ( 𝑃 ‘ ( 0 + 1 ) ) ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ↔ +∞ < ( 𝑃 ‘ ( 0 + 1 ) ) ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ ( 0 + 1 ) ) ↔ +∞ < ( 𝑃 ‘ ( 0 + 1 ) ) ) ) |
| 116 |
112 115
|
mpbid |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → +∞ < ( 𝑃 ‘ ( 0 + 1 ) ) ) |
| 117 |
1
|
ad2antrl |
⊢ ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → 𝑀 ∈ ℕ ) |
| 118 |
117
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
| 119 |
2
|
ad2antrl |
⊢ ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 120 |
119
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 121 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 122 |
121
|
a1i |
⊢ ( 𝑀 ∈ ℕ → 1 ∈ ℕ0 ) |
| 123 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 124 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
| 125 |
122 123 124
|
3jca |
⊢ ( 𝑀 ∈ ℕ → ( 1 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀 ) ) |
| 126 |
1 125
|
syl |
⊢ ( 𝜑 → ( 1 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀 ) ) |
| 127 |
|
elfz2nn0 |
⊢ ( 1 ∈ ( 0 ... 𝑀 ) ↔ ( 1 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀 ) ) |
| 128 |
126 127
|
sylibr |
⊢ ( 𝜑 → 1 ∈ ( 0 ... 𝑀 ) ) |
| 129 |
18 128
|
eqeltrid |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 130 |
129
|
ad2antrl |
⊢ ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ( 0 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 131 |
130
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 0 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 132 |
118 120 131
|
iccpartxr |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ ( 0 + 1 ) ) ∈ ℝ* ) |
| 133 |
|
pnfnlt |
⊢ ( ( 𝑃 ‘ ( 0 + 1 ) ) ∈ ℝ* → ¬ +∞ < ( 𝑃 ‘ ( 0 + 1 ) ) ) |
| 134 |
132 133
|
syl |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ¬ +∞ < ( 𝑃 ‘ ( 0 + 1 ) ) ) |
| 135 |
116 134
|
pm2.21dd |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
| 136 |
135
|
ralrimiva |
⊢ ( ( ( 𝑃 ‘ 0 ) = +∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
| 137 |
136
|
ex |
⊢ ( ( 𝑃 ‘ 0 ) = +∞ → ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 138 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
| 139 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 140 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑖 ∈ ( 1 ..^ 𝑀 ) ) |
| 141 |
138 139 140
|
iccpartipre |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ ) |
| 142 |
|
mnflt |
⊢ ( ( 𝑃 ‘ 𝑖 ) ∈ ℝ → -∞ < ( 𝑃 ‘ 𝑖 ) ) |
| 143 |
141 142
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → -∞ < ( 𝑃 ‘ 𝑖 ) ) |
| 144 |
143
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) -∞ < ( 𝑃 ‘ 𝑖 ) ) |
| 145 |
144
|
ad2antrl |
⊢ ( ( ( 𝑃 ‘ 0 ) = -∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) -∞ < ( 𝑃 ‘ 𝑖 ) ) |
| 146 |
|
breq1 |
⊢ ( ( 𝑃 ‘ 0 ) = -∞ → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ↔ -∞ < ( 𝑃 ‘ 𝑖 ) ) ) |
| 147 |
146
|
adantr |
⊢ ( ( ( 𝑃 ‘ 0 ) = -∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ( ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ↔ -∞ < ( 𝑃 ‘ 𝑖 ) ) ) |
| 148 |
147
|
ralbidv |
⊢ ( ( ( 𝑃 ‘ 0 ) = -∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) -∞ < ( 𝑃 ‘ 𝑖 ) ) ) |
| 149 |
145 148
|
mpbird |
⊢ ( ( ( 𝑃 ‘ 0 ) = -∞ ∧ ( 𝜑 ∧ ¬ 𝑀 = 1 ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
| 150 |
149
|
ex |
⊢ ( ( 𝑃 ‘ 0 ) = -∞ → ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 151 |
104 137 150
|
3jaoi |
⊢ ( ( ( 𝑃 ‘ 0 ) ∈ ℝ ∨ ( 𝑃 ‘ 0 ) = +∞ ∨ ( 𝑃 ‘ 0 ) = -∞ ) → ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 152 |
15 151
|
sylbi |
⊢ ( ( 𝑃 ‘ 0 ) ∈ ℝ* → ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 153 |
14 152
|
mpcom |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |
| 154 |
153
|
expcom |
⊢ ( ¬ 𝑀 = 1 → ( 𝜑 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) ) |
| 155 |
9 154
|
pm2.61i |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 0 ) < ( 𝑃 ‘ 𝑖 ) ) |