| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 3 |
|
ral0 |
⊢ ∀ 𝑖 ∈ ∅ ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 1 ) |
| 4 |
|
oveq2 |
⊢ ( 𝑀 = 1 → ( 1 ..^ 𝑀 ) = ( 1 ..^ 1 ) ) |
| 5 |
|
fzo0 |
⊢ ( 1 ..^ 1 ) = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝑀 = 1 → ( 1 ..^ 𝑀 ) = ∅ ) |
| 7 |
|
fveq2 |
⊢ ( 𝑀 = 1 → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ 1 ) ) |
| 8 |
7
|
breq2d |
⊢ ( 𝑀 = 1 → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 1 ) ) ) |
| 9 |
6 8
|
raleqbidv |
⊢ ( 𝑀 = 1 → ( ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ↔ ∀ 𝑖 ∈ ∅ ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 1 ) ) ) |
| 10 |
3 9
|
mpbiri |
⊢ ( 𝑀 = 1 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 11 |
10
|
2a1d |
⊢ ( 𝑀 = 1 → ( 𝜑 → ( 𝑀 ∈ ℕ → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
| 13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 15 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 16 |
|
nn0fz0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 17 |
15 16
|
sylib |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 19 |
12 14 18
|
iccpartxr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) |
| 20 |
|
elxr |
⊢ ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ↔ ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∨ ( 𝑃 ‘ 𝑀 ) = +∞ ∨ ( 𝑃 ‘ 𝑀 ) = -∞ ) ) |
| 21 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑖 ∈ ℤ ) |
| 22 |
21
|
ad2antll |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑖 ∈ ℤ ) |
| 23 |
|
elfzo2 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) ) |
| 24 |
|
eluzelz |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → 𝑖 ∈ ℤ ) |
| 25 |
24
|
peano2zd |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑖 + 1 ) ∈ ℤ ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → ( 𝑖 + 1 ) ∈ ℤ ) |
| 27 |
|
simp2 |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → 𝑀 ∈ ℤ ) |
| 28 |
|
zltp1le |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑖 < 𝑀 ↔ ( 𝑖 + 1 ) ≤ 𝑀 ) ) |
| 29 |
24 28
|
sylan |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑖 < 𝑀 ↔ ( 𝑖 + 1 ) ≤ 𝑀 ) ) |
| 30 |
29
|
biimp3a |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → ( 𝑖 + 1 ) ≤ 𝑀 ) |
| 31 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ↔ ( ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑖 + 1 ) ≤ 𝑀 ) ) |
| 32 |
26 27 30 31
|
syl3anbrc |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) |
| 33 |
23 32
|
sylbi |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) |
| 34 |
33
|
ad2antll |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑖 + 1 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑀 ) ) |
| 36 |
35
|
eqcomd |
⊢ ( 𝑘 = 𝑀 → ( 𝑃 ‘ 𝑀 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ↔ ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 38 |
37
|
biimpcd |
⊢ ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ → ( 𝑘 = 𝑀 → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑘 = 𝑀 → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → ( 𝑘 = 𝑀 → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 41 |
40
|
com12 |
⊢ ( 𝑘 = 𝑀 → ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 42 |
12
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑀 ∈ ℕ ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
| 45 |
44
|
adantl |
⊢ ( ( ¬ 𝑘 = 𝑀 ∧ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) ) → 𝑀 ∈ ℕ ) |
| 46 |
14
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 49 |
48
|
adantl |
⊢ ( ( ¬ 𝑘 = 𝑀 ∧ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 50 |
|
elfz2 |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) ↔ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) ) |
| 51 |
|
eluz2 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ) ) |
| 52 |
|
1red |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 1 ∈ ℝ ) |
| 53 |
|
zre |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℝ ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑖 ∈ ℝ ) |
| 55 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
| 57 |
|
letr |
⊢ ( ( 1 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘 ) → 1 ≤ 𝑘 ) ) |
| 58 |
52 54 56 57
|
syl3anc |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 1 ≤ 𝑖 ∧ 𝑖 ≤ 𝑘 ) → 1 ≤ 𝑘 ) ) |
| 59 |
58
|
expcomd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑖 ≤ 𝑘 → ( 1 ≤ 𝑖 → 1 ≤ 𝑘 ) ) ) |
| 60 |
59
|
adantrd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) → ( 1 ≤ 𝑖 → 1 ≤ 𝑘 ) ) ) |
| 61 |
60
|
3adant2 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) → ( 1 ≤ 𝑖 → 1 ≤ 𝑘 ) ) ) |
| 62 |
61
|
imp |
⊢ ( ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) → ( 1 ≤ 𝑖 → 1 ≤ 𝑘 ) ) |
| 63 |
62
|
com12 |
⊢ ( 1 ≤ 𝑖 → ( ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) → 1 ≤ 𝑘 ) ) |
| 64 |
63
|
3ad2ant3 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ) → ( ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) → 1 ≤ 𝑘 ) ) |
| 65 |
51 64
|
sylbi |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) → 1 ≤ 𝑘 ) ) |
| 66 |
65
|
3ad2ant1 |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀 ) → ( ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) → 1 ≤ 𝑘 ) ) |
| 67 |
23 66
|
sylbi |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) → 1 ≤ 𝑘 ) ) |
| 68 |
50 67
|
biimtrid |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → 1 ≤ 𝑘 ) ) |
| 69 |
68
|
imp |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → 1 ≤ 𝑘 ) |
| 70 |
69
|
3adant3 |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ∧ ¬ 𝑘 = 𝑀 ) → 1 ≤ 𝑘 ) |
| 71 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 72 |
71 55
|
anim12ci |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 73 |
72
|
3adant1 |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 74 |
|
ltlen |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑘 < 𝑀 ↔ ( 𝑘 ≤ 𝑀 ∧ 𝑀 ≠ 𝑘 ) ) ) |
| 75 |
73 74
|
syl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 < 𝑀 ↔ ( 𝑘 ≤ 𝑀 ∧ 𝑀 ≠ 𝑘 ) ) ) |
| 76 |
|
nesym |
⊢ ( 𝑀 ≠ 𝑘 ↔ ¬ 𝑘 = 𝑀 ) |
| 77 |
76
|
anbi2i |
⊢ ( ( 𝑘 ≤ 𝑀 ∧ 𝑀 ≠ 𝑘 ) ↔ ( 𝑘 ≤ 𝑀 ∧ ¬ 𝑘 = 𝑀 ) ) |
| 78 |
75 77
|
bitr2di |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 ≤ 𝑀 ∧ ¬ 𝑘 = 𝑀 ) ↔ 𝑘 < 𝑀 ) ) |
| 79 |
78
|
biimpd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 ≤ 𝑀 ∧ ¬ 𝑘 = 𝑀 ) → 𝑘 < 𝑀 ) ) |
| 80 |
79
|
expd |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ≤ 𝑀 → ( ¬ 𝑘 = 𝑀 → 𝑘 < 𝑀 ) ) ) |
| 81 |
80
|
adantld |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) → ( ¬ 𝑘 = 𝑀 → 𝑘 < 𝑀 ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑖 ≤ 𝑘 ∧ 𝑘 ≤ 𝑀 ) ) → ( ¬ 𝑘 = 𝑀 → 𝑘 < 𝑀 ) ) |
| 83 |
50 82
|
sylbi |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → ( ¬ 𝑘 = 𝑀 → 𝑘 < 𝑀 ) ) |
| 84 |
83
|
imp |
⊢ ( ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) ∧ ¬ 𝑘 = 𝑀 ) → 𝑘 < 𝑀 ) |
| 85 |
84
|
3adant1 |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ∧ ¬ 𝑘 = 𝑀 ) → 𝑘 < 𝑀 ) |
| 86 |
70 85
|
jca |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ∧ ¬ 𝑘 = 𝑀 ) → ( 1 ≤ 𝑘 ∧ 𝑘 < 𝑀 ) ) |
| 87 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → 𝑘 ∈ ℤ ) |
| 88 |
|
1zzd |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → 1 ∈ ℤ ) |
| 89 |
|
elfzel2 |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → 𝑀 ∈ ℤ ) |
| 90 |
87 88 89
|
3jca |
⊢ ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 91 |
90
|
3ad2ant2 |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ∧ ¬ 𝑘 = 𝑀 ) → ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 92 |
|
elfzo |
⊢ ( ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑘 ∈ ( 1 ..^ 𝑀 ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 < 𝑀 ) ) ) |
| 93 |
91 92
|
syl |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ∧ ¬ 𝑘 = 𝑀 ) → ( 𝑘 ∈ ( 1 ..^ 𝑀 ) ↔ ( 1 ≤ 𝑘 ∧ 𝑘 < 𝑀 ) ) ) |
| 94 |
86 93
|
mpbird |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ∧ ¬ 𝑘 = 𝑀 ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) |
| 95 |
94
|
3exp |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → ( ¬ 𝑘 = 𝑀 → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) ) ) |
| 96 |
95
|
ad2antll |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑘 ∈ ( 𝑖 ... 𝑀 ) → ( ¬ 𝑘 = 𝑀 → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) ) ) |
| 97 |
96
|
imp |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → ( ¬ 𝑘 = 𝑀 → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) ) |
| 98 |
97
|
impcom |
⊢ ( ( ¬ 𝑘 = 𝑀 ∧ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) |
| 99 |
45 49 98
|
iccpartipre |
⊢ ( ( ¬ 𝑘 = 𝑀 ∧ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) |
| 100 |
99
|
ex |
⊢ ( ¬ 𝑘 = 𝑀 → ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) ) |
| 101 |
41 100
|
pm2.61i |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ℝ ) |
| 102 |
43
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℕ ) |
| 103 |
47
|
adantr |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 104 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 105 |
|
fzoss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ..^ 𝑀 ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 106 |
104 105
|
mp1i |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 1 ..^ 𝑀 ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 107 |
|
elfzoel2 |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 108 |
|
fzoval |
⊢ ( 𝑀 ∈ ℤ → ( 𝑖 ..^ 𝑀 ) = ( 𝑖 ... ( 𝑀 − 1 ) ) ) |
| 109 |
107 108
|
syl |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑖 ..^ 𝑀 ) = ( 𝑖 ... ( 𝑀 − 1 ) ) ) |
| 110 |
109
|
eqcomd |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑖 ... ( 𝑀 − 1 ) ) = ( 𝑖 ..^ 𝑀 ) ) |
| 111 |
110
|
eleq2d |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ↔ 𝑘 ∈ ( 𝑖 ..^ 𝑀 ) ) ) |
| 112 |
|
elfzouz |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 113 |
|
fzoss1 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑖 ..^ 𝑀 ) ⊆ ( 1 ..^ 𝑀 ) ) |
| 114 |
112 113
|
syl |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑖 ..^ 𝑀 ) ⊆ ( 1 ..^ 𝑀 ) ) |
| 115 |
114
|
sseld |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑘 ∈ ( 𝑖 ..^ 𝑀 ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) ) |
| 116 |
111 115
|
sylbid |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) ) |
| 117 |
116
|
imp |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ( 1 ..^ 𝑀 ) ) |
| 118 |
106 117
|
sseldd |
⊢ ( ( 𝑖 ∈ ( 1 ..^ 𝑀 ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 119 |
118
|
ex |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → ( 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 120 |
119
|
ad2antll |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) ) |
| 121 |
120
|
imp |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ 𝑀 ) ) |
| 122 |
|
iccpartimp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 123 |
102 103 121 122
|
syl3anc |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 124 |
123
|
simprd |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) ∧ 𝑘 ∈ ( 𝑖 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 125 |
22 34 101 124
|
smonoord |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 126 |
125
|
ex |
⊢ ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ → ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 127 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑖 ∈ ( 1 ..^ 𝑀 ) ) |
| 128 |
42 46 127
|
iccpartipre |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ ) |
| 129 |
|
ltpnf |
⊢ ( ( 𝑃 ‘ 𝑖 ) ∈ ℝ → ( 𝑃 ‘ 𝑖 ) < +∞ ) |
| 130 |
128 129
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) < +∞ ) |
| 131 |
|
breq2 |
⊢ ( ( 𝑃 ‘ 𝑀 ) = +∞ → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑃 ‘ 𝑖 ) < +∞ ) ) |
| 132 |
130 131
|
imbitrrid |
⊢ ( ( 𝑃 ‘ 𝑀 ) = +∞ → ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 133 |
42
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑀 ∈ ℕ ) |
| 134 |
46
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 135 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 1 ..^ 𝑀 ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 136 |
135
|
ad2antll |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 137 |
|
elfzubelfz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 138 |
136 137
|
syl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 139 |
133 134 138
|
iccpartgtprec |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ ( 𝑀 − 1 ) ) < ( 𝑃 ‘ 𝑀 ) ) |
| 140 |
|
breq2 |
⊢ ( -∞ = ( 𝑃 ‘ 𝑀 ) → ( ( 𝑃 ‘ ( 𝑀 − 1 ) ) < -∞ ↔ ( 𝑃 ‘ ( 𝑀 − 1 ) ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 141 |
140
|
eqcoms |
⊢ ( ( 𝑃 ‘ 𝑀 ) = -∞ → ( ( 𝑃 ‘ ( 𝑀 − 1 ) ) < -∞ ↔ ( 𝑃 ‘ ( 𝑀 − 1 ) ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 142 |
141
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ ( 𝑀 − 1 ) ) < -∞ ↔ ( 𝑃 ‘ ( 𝑀 − 1 ) ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 143 |
139 142
|
mpbird |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ ( 𝑀 − 1 ) ) < -∞ ) |
| 144 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ0 ) |
| 145 |
144
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ0 ) |
| 146 |
|
nnne0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) |
| 147 |
146
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ≠ 0 ) |
| 148 |
|
df-ne |
⊢ ( 𝑀 ≠ 1 ↔ ¬ 𝑀 = 1 ) |
| 149 |
148
|
biimpri |
⊢ ( ¬ 𝑀 = 1 → 𝑀 ≠ 1 ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → 𝑀 ≠ 1 ) |
| 151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ≠ 1 ) |
| 152 |
144 147 151
|
3jca |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ∧ 𝑀 ≠ 1 ) ) |
| 153 |
152
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ∧ 𝑀 ≠ 1 ) ) |
| 154 |
|
nn0n0n1ge2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ∧ 𝑀 ≠ 1 ) → 2 ≤ 𝑀 ) |
| 155 |
153 154
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → 2 ≤ 𝑀 ) |
| 156 |
145 155
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑀 ∈ ℕ0 ∧ 2 ≤ 𝑀 ) ) |
| 157 |
156
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑀 ∈ ℕ0 ∧ 2 ≤ 𝑀 ) ) |
| 158 |
|
ige2m1fz |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 2 ≤ 𝑀 ) → ( 𝑀 − 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 159 |
157 158
|
syl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑀 − 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 160 |
133 134 159
|
iccpartxr |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ ( 𝑀 − 1 ) ) ∈ ℝ* ) |
| 161 |
|
nltmnf |
⊢ ( ( 𝑃 ‘ ( 𝑀 − 1 ) ) ∈ ℝ* → ¬ ( 𝑃 ‘ ( 𝑀 − 1 ) ) < -∞ ) |
| 162 |
160 161
|
syl |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ¬ ( 𝑃 ‘ ( 𝑀 − 1 ) ) < -∞ ) |
| 163 |
143 162
|
pm2.21dd |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) = -∞ ∧ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 164 |
163
|
ex |
⊢ ( ( 𝑃 ‘ 𝑀 ) = -∞ → ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 165 |
126 132 164
|
3jaoi |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∨ ( 𝑃 ‘ 𝑀 ) = +∞ ∨ ( 𝑃 ‘ 𝑀 ) = -∞ ) → ( ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 166 |
165
|
impl |
⊢ ( ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∨ ( 𝑃 ‘ 𝑀 ) = +∞ ∨ ( 𝑃 ‘ 𝑀 ) = -∞ ) ∧ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ) ∧ 𝑖 ∈ ( 1 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 167 |
166
|
ralrimiva |
⊢ ( ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∨ ( 𝑃 ‘ 𝑀 ) = +∞ ∨ ( 𝑃 ‘ 𝑀 ) = -∞ ) ∧ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 168 |
167
|
ex |
⊢ ( ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ ∨ ( 𝑃 ‘ 𝑀 ) = +∞ ∨ ( 𝑃 ‘ 𝑀 ) = -∞ ) → ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 169 |
20 168
|
sylbi |
⊢ ( ( 𝑃 ‘ 𝑀 ) ∈ ℝ* → ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 170 |
19 169
|
mpcom |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) ∧ 𝑀 ∈ ℕ ) → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 171 |
170
|
ex |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 1 ) → ( 𝑀 ∈ ℕ → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 172 |
171
|
expcom |
⊢ ( ¬ 𝑀 = 1 → ( 𝜑 → ( 𝑀 ∈ ℕ → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) ) |
| 173 |
11 172
|
pm2.61i |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 174 |
1 173
|
mpd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |