| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 3 |
|
iccpartipre.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ..^ 𝑀 ) ) |
| 4 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 5 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
| 6 |
|
id |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℤ ) |
| 7 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 8 |
7
|
lem1d |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ≤ 𝑀 ) |
| 9 |
5 6 8
|
3jca |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 − 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ≤ 𝑀 ) ) |
| 10 |
4 9
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ≤ 𝑀 ) ) |
| 11 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ≤ 𝑀 ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 14 |
|
fzss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( 0 ... ( 𝑀 − 1 ) ) ⊆ ( 0 ... 𝑀 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 0 ... ( 𝑀 − 1 ) ) ⊆ ( 0 ... 𝑀 ) ) |
| 16 |
|
fzossfz |
⊢ ( 1 ..^ 𝑀 ) ⊆ ( 1 ... 𝑀 ) |
| 17 |
16 3
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ... 𝑀 ) ) |
| 18 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝑀 ) → 𝐼 ∈ ℤ ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
| 20 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 21 |
|
elfzm1b |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐼 ∈ ( 1 ... 𝑀 ) ↔ ( 𝐼 − 1 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ... 𝑀 ) ↔ ( 𝐼 − 1 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 23 |
17 22
|
mpbid |
⊢ ( 𝜑 → ( 𝐼 − 1 ) ∈ ( 0 ... ( 𝑀 − 1 ) ) ) |
| 24 |
15 23
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 − 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 25 |
1 2 24
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝐼 − 1 ) ) ∈ ℝ* ) |
| 26 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 27 |
|
fzoss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ..^ 𝑀 ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 28 |
26 27
|
mp1i |
⊢ ( 𝜑 → ( 1 ..^ 𝑀 ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 29 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
| 30 |
28 29
|
sstrdi |
⊢ ( 𝜑 → ( 1 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
| 31 |
30 3
|
sseldd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
| 32 |
1 2 31
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ) |
| 33 |
28 3
|
sseldd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝑀 ) ) |
| 34 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 36 |
1 2 35
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
| 37 |
1 2 17
|
iccpartgtprec |
⊢ ( 𝜑 → ( 𝑃 ‘ ( 𝐼 − 1 ) ) < ( 𝑃 ‘ 𝐼 ) ) |
| 38 |
|
iccpartimp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑃 ∈ ( RePart ‘ 𝑀 ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) |
| 39 |
1 2 33 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) |
| 40 |
39
|
simprd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
| 41 |
|
xrre2 |
⊢ ( ( ( ( 𝑃 ‘ ( 𝐼 − 1 ) ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) ∧ ( ( 𝑃 ‘ ( 𝐼 − 1 ) ) < ( 𝑃 ‘ 𝐼 ) ∧ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ( 𝑃 ‘ 𝐼 ) ∈ ℝ ) |
| 42 |
25 32 36 37 40 41
|
syl32anc |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐼 ) ∈ ℝ ) |