| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccpartgtprec.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
iccpartgtprec.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 3 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 4 |
|
elnn0uz |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 7 |
|
fzisfzounsn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑀 ) = ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) = ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ) |
| 9 |
8
|
eleq2d |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) ↔ 𝑖 ∈ ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ) ) |
| 10 |
|
elun |
⊢ ( 𝑖 ∈ ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ↔ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑖 ∈ { 𝑀 } ) ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ( 0 ..^ 𝑀 ) ∪ { 𝑀 } ) ↔ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑖 ∈ { 𝑀 } ) ) ) |
| 12 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝑀 } ↔ 𝑖 = 𝑀 ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝑖 ∈ { 𝑀 } ↔ 𝑖 = 𝑀 ) ) |
| 14 |
13
|
orbi2d |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑖 ∈ { 𝑀 } ) ↔ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) ) ) |
| 15 |
9 11 14
|
3bitrd |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) ) ) |
| 16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
| 18 |
|
fzossfz |
⊢ ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑀 ) ⊆ ( 0 ... 𝑀 ) ) |
| 20 |
19
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 21 |
16 17 20
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ∈ ℝ* ) |
| 22 |
|
nn0fz0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 23 |
3 22
|
sylib |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 25 |
1 2 24
|
iccpartxr |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑀 ) ∈ ℝ* ) |
| 27 |
1 2
|
iccpartltu |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑖 ) ) |
| 29 |
28
|
breq1d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 30 |
29
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑘 ) < ( 𝑃 ‘ 𝑀 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 31 |
27 30
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑀 ) ) |
| 33 |
21 26 32
|
xrltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
| 34 |
33
|
expcom |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝜑 → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑀 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝑖 = 𝑀 ∧ 𝜑 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑀 ) ) |
| 37 |
25
|
xrleidd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝑀 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝑖 = 𝑀 ∧ 𝜑 ) → ( 𝑃 ‘ 𝑀 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
| 39 |
36 38
|
eqbrtrd |
⊢ ( ( 𝑖 = 𝑀 ∧ 𝜑 ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |
| 40 |
39
|
ex |
⊢ ( 𝑖 = 𝑀 → ( 𝜑 → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
| 41 |
34 40
|
jaoi |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) → ( 𝜑 → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
| 42 |
41
|
com12 |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∨ 𝑖 = 𝑀 ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
| 43 |
15 42
|
sylbid |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑀 ) → ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) ) |
| 44 |
43
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑖 ) ≤ ( 𝑃 ‘ 𝑀 ) ) |