Step |
Hyp |
Ref |
Expression |
1 |
|
iccpartnel.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
iccpartnel.p |
⊢ ( 𝜑 → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
3 |
|
iccpartnel.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑃 ) |
4 |
|
elioo3g |
⊢ ( 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ↔ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
5 |
|
iccpart |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) ↔ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) ) ) |
7 |
|
elmapfn |
⊢ ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) → 𝑃 Fn ( 0 ... 𝑀 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℝ* ↑m ( 0 ... 𝑀 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ ( 𝑖 + 1 ) ) ) → 𝑃 Fn ( 0 ... 𝑀 ) ) |
9 |
6 8
|
syl6bi |
⊢ ( 𝜑 → ( 𝑃 ∈ ( RePart ‘ 𝑀 ) → 𝑃 Fn ( 0 ... 𝑀 ) ) ) |
10 |
2 9
|
mpd |
⊢ ( 𝜑 → 𝑃 Fn ( 0 ... 𝑀 ) ) |
11 |
|
fvelrnb |
⊢ ( 𝑃 Fn ( 0 ... 𝑀 ) → ( 𝑋 ∈ ran 𝑃 ↔ ∃ 𝑥 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 ) = 𝑋 ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ran 𝑃 ↔ ∃ 𝑥 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 ) = 𝑋 ) ) |
13 |
3 12
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 ) = 𝑋 ) |
14 |
|
elfzelz |
⊢ ( 𝑥 ∈ ( 0 ... 𝑀 ) → 𝑥 ∈ ℤ ) |
15 |
14
|
zred |
⊢ ( 𝑥 ∈ ( 0 ... 𝑀 ) → 𝑥 ∈ ℝ ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ℝ ) |
17 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ℤ ) |
18 |
17
|
zred |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ℝ ) |
19 |
|
lelttric |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( 𝑥 ≤ 𝐼 ∨ 𝐼 < 𝑥 ) ) |
20 |
16 18 19
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ≤ 𝐼 ∨ 𝐼 < 𝑥 ) ) |
21 |
|
breq2 |
⊢ ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑃 ‘ 𝐼 ) < 𝑋 ) ) |
22 |
|
breq1 |
⊢ ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ↔ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) |
23 |
21 22
|
anbi12d |
⊢ ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
24 |
|
leloe |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐼 ∈ ℝ ) → ( 𝑥 ≤ 𝐼 ↔ ( 𝑥 < 𝐼 ∨ 𝑥 = 𝐼 ) ) ) |
25 |
16 18 24
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ≤ 𝐼 ↔ ( 𝑥 < 𝐼 ∨ 𝑥 = 𝐼 ) ) ) |
26 |
1 2
|
iccpartgt |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ( 0 ... 𝑀 ) ) |
30 |
|
elfzofz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → 𝐼 ∈ ( 0 ... 𝑀 ) ) |
31 |
|
breq1 |
⊢ ( 𝑖 = 𝑥 → ( 𝑖 < 𝑘 ↔ 𝑥 < 𝑘 ) ) |
32 |
|
fveq2 |
⊢ ( 𝑖 = 𝑥 → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ 𝑥 ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑖 = 𝑥 → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝑘 ) ) ) |
34 |
31 33
|
imbi12d |
⊢ ( 𝑖 = 𝑥 → ( ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) ↔ ( 𝑥 < 𝑘 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝑘 ) ) ) ) |
35 |
|
breq2 |
⊢ ( 𝑘 = 𝐼 → ( 𝑥 < 𝑘 ↔ 𝑥 < 𝐼 ) ) |
36 |
|
fveq2 |
⊢ ( 𝑘 = 𝐼 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝐼 ) ) |
37 |
36
|
breq2d |
⊢ ( 𝑘 = 𝐼 → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) ) |
38 |
35 37
|
imbi12d |
⊢ ( 𝑘 = 𝐼 → ( ( 𝑥 < 𝑘 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝑘 ) ) ↔ ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) ) ) |
39 |
34 38
|
rspc2v |
⊢ ( ( 𝑥 ∈ ( 0 ... 𝑀 ) ∧ 𝐼 ∈ ( 0 ... 𝑀 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) → ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) ) ) |
40 |
29 30 39
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) → ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) ) ) |
41 |
28 40
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) ) |
42 |
|
pm3.35 |
⊢ ( ( 𝑥 < 𝐼 ∧ ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) ) → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) |
43 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → 𝑀 ∈ ℕ ) |
44 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → 𝑃 ∈ ( RePart ‘ 𝑀 ) ) |
45 |
43 44 29
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → ( 𝑃 ‘ 𝑥 ) ∈ ℝ* ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑃 ‘ 𝑥 ) ∈ ℝ* ) |
47 |
|
simp1 |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ) |
48 |
|
xrltle |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ) → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) → ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝐼 ) ) ) |
49 |
46 47 48
|
syl2anr |
⊢ ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) → ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝐼 ) ) ) |
50 |
|
xrlenlt |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) ∈ ℝ* ∧ ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ) → ( ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝐼 ) ↔ ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) ) |
51 |
46 47 50
|
syl2anr |
⊢ ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝐼 ) ↔ ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) ) |
52 |
49 51
|
sylibd |
⊢ ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) ) |
53 |
52
|
ex |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) ) ) |
54 |
53
|
com13 |
⊢ ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) ) ) |
55 |
54
|
imp |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ∧ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ∧ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) |
57 |
56
|
pm2.21d |
⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ∧ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
58 |
57
|
ex |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ∧ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) |
59 |
58
|
ex |
⊢ ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
60 |
42 59
|
syl |
⊢ ( ( 𝑥 < 𝐼 ∧ ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
61 |
60
|
ex |
⊢ ( 𝑥 < 𝐼 → ( ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
62 |
61
|
com13 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 < 𝐼 → ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ 𝐼 ) ) → ( 𝑥 < 𝐼 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
63 |
41 62
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 < 𝐼 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
64 |
63
|
com12 |
⊢ ( 𝑥 < 𝐼 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
65 |
|
fveq2 |
⊢ ( 𝑥 = 𝐼 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝐼 ) ) |
66 |
65
|
breq2d |
⊢ ( 𝑥 = 𝐼 → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝐼 ) ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝑥 = 𝐼 ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝐼 ) ) ) |
68 |
|
xrltnr |
⊢ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝐼 ) ) |
69 |
68
|
3ad2ant1 |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝐼 ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝑥 = 𝐼 ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ¬ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝐼 ) ) |
71 |
70
|
pm2.21d |
⊢ ( ( 𝑥 = 𝐼 ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝐼 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
72 |
67 71
|
sylbid |
⊢ ( ( 𝑥 = 𝐼 ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
73 |
72
|
ex |
⊢ ( 𝑥 = 𝐼 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) |
74 |
73
|
a1d |
⊢ ( 𝑥 = 𝐼 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
75 |
64 74
|
jaoi |
⊢ ( ( 𝑥 < 𝐼 ∨ 𝑥 = 𝐼 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
76 |
75
|
com12 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 < 𝐼 ∨ 𝑥 = 𝐼 ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
77 |
25 76
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ≤ 𝐼 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
78 |
77
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝑥 ≤ 𝐼 → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
79 |
78
|
com14 |
⊢ ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝑥 ≤ 𝐼 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝑥 ≤ 𝐼 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
81 |
23 80
|
syl6bir |
⊢ ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝑥 ≤ 𝐼 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
82 |
81
|
com14 |
⊢ ( 𝑥 ≤ 𝐼 → ( ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
83 |
82
|
com23 |
⊢ ( 𝑥 ≤ 𝐼 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
84 |
83
|
impd |
⊢ ( 𝑥 ≤ 𝐼 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
85 |
84
|
com24 |
⊢ ( 𝑥 ≤ 𝐼 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
86 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → 𝑥 ∈ ℤ ) |
87 |
|
zltp1le |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝐼 < 𝑥 ↔ ( 𝐼 + 1 ) ≤ 𝑥 ) ) |
88 |
17 86 87
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 < 𝑥 ↔ ( 𝐼 + 1 ) ≤ 𝑥 ) ) |
89 |
17
|
peano2zd |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ℤ ) |
90 |
89
|
zred |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ℝ ) |
91 |
|
leloe |
⊢ ( ( ( 𝐼 + 1 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐼 + 1 ) ≤ 𝑥 ↔ ( ( 𝐼 + 1 ) < 𝑥 ∨ ( 𝐼 + 1 ) = 𝑥 ) ) ) |
92 |
90 16 91
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐼 + 1 ) ≤ 𝑥 ↔ ( ( 𝐼 + 1 ) < 𝑥 ∨ ( 𝐼 + 1 ) = 𝑥 ) ) ) |
93 |
88 92
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 < 𝑥 ↔ ( ( 𝐼 + 1 ) < 𝑥 ∨ ( 𝐼 + 1 ) = 𝑥 ) ) ) |
94 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
95 |
|
breq1 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( 𝑖 < 𝑘 ↔ ( 𝐼 + 1 ) < 𝑘 ) ) |
96 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
97 |
96
|
breq1d |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑘 ) ) ) |
98 |
95 97
|
imbi12d |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) ↔ ( ( 𝐼 + 1 ) < 𝑘 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑘 ) ) ) ) |
99 |
|
breq2 |
⊢ ( 𝑘 = 𝑥 → ( ( 𝐼 + 1 ) < 𝑘 ↔ ( 𝐼 + 1 ) < 𝑥 ) ) |
100 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑥 ) ) |
101 |
100
|
breq2d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) |
102 |
99 101
|
imbi12d |
⊢ ( 𝑘 = 𝑥 → ( ( ( 𝐼 + 1 ) < 𝑘 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑘 ) ) ↔ ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) ) |
103 |
98 102
|
rspc2v |
⊢ ( ( ( 𝐼 + 1 ) ∈ ( 0 ... 𝑀 ) ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) → ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) ) |
104 |
94 29 103
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∀ 𝑘 ∈ ( 0 ... 𝑀 ) ( 𝑖 < 𝑘 → ( 𝑃 ‘ 𝑖 ) < ( 𝑃 ‘ 𝑘 ) ) → ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) ) |
105 |
28 104
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) |
106 |
|
pm3.35 |
⊢ ( ( ( 𝐼 + 1 ) < 𝑥 ∧ ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) |
107 |
|
simp2 |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
108 |
|
xrltnsym |
⊢ ( ( ( 𝑃 ‘ 𝑥 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) → ¬ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) |
109 |
46 107 108
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) → ¬ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) |
110 |
109
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) |
111 |
110
|
pm2.21d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
112 |
111
|
expcom |
⊢ ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) → ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) |
113 |
112
|
expd |
⊢ ( ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
114 |
113
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
115 |
114
|
com14 |
⊢ ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
116 |
106 115
|
syl |
⊢ ( ( ( 𝐼 + 1 ) < 𝑥 ∧ ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
117 |
116
|
ex |
⊢ ( ( 𝐼 + 1 ) < 𝑥 → ( ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
118 |
117
|
com13 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐼 + 1 ) < 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ 𝑥 ) ) → ( ( 𝐼 + 1 ) < 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
119 |
105 118
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐼 + 1 ) < 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
120 |
119
|
com12 |
⊢ ( ( 𝐼 + 1 ) < 𝑥 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
121 |
|
fveq2 |
⊢ ( ( 𝐼 + 1 ) = 𝑥 → ( 𝑃 ‘ ( 𝐼 + 1 ) ) = ( 𝑃 ‘ 𝑥 ) ) |
122 |
121
|
breq2d |
⊢ ( ( 𝐼 + 1 ) = 𝑥 → ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ↔ ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ) ) |
123 |
121
|
breq1d |
⊢ ( ( 𝐼 + 1 ) = 𝑥 → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ↔ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) |
124 |
122 123
|
anbi12d |
⊢ ( ( 𝐼 + 1 ) = 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ↔ ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
125 |
|
xrltnr |
⊢ ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* → ¬ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
126 |
125
|
3ad2ant2 |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ¬ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
127 |
126
|
pm2.21d |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
128 |
127
|
com12 |
⊢ ( ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
129 |
128
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
130 |
124 129
|
syl6bir |
⊢ ( ( 𝐼 + 1 ) = 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) |
131 |
130
|
com23 |
⊢ ( ( 𝐼 + 1 ) = 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) |
132 |
131
|
a1d |
⊢ ( ( 𝐼 + 1 ) = 𝑥 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
133 |
120 132
|
jaoi |
⊢ ( ( ( 𝐼 + 1 ) < 𝑥 ∨ ( 𝐼 + 1 ) = 𝑥 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
134 |
133
|
com12 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐼 + 1 ) < 𝑥 ∨ ( 𝐼 + 1 ) = 𝑥 ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
135 |
93 134
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 < 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
136 |
135
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝐼 < 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
137 |
136
|
com14 |
⊢ ( ( ( 𝑃 ‘ 𝐼 ) < ( 𝑃 ‘ 𝑥 ) ∧ ( 𝑃 ‘ 𝑥 ) < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝐼 < 𝑥 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
138 |
23 137
|
syl6bir |
⊢ ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( 𝐼 < 𝑥 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
139 |
138
|
com14 |
⊢ ( 𝐼 < 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
140 |
139
|
com23 |
⊢ ( 𝐼 < 𝑥 → ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) → ( ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) ) |
141 |
140
|
impd |
⊢ ( 𝐼 < 𝑥 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
142 |
141
|
com24 |
⊢ ( 𝐼 < 𝑥 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
143 |
85 142
|
jaoi |
⊢ ( ( 𝑥 ≤ 𝐼 ∨ 𝐼 < 𝑥 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
144 |
143
|
com12 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑥 ≤ 𝐼 ∨ 𝐼 < 𝑥 ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
145 |
20 144
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) |
146 |
145
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
147 |
146
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
148 |
147
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 0 ... 𝑀 ) ( 𝑃 ‘ 𝑥 ) = 𝑋 → ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) ) |
149 |
13 148
|
mpd |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 0 ..^ 𝑀 ) → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) ) |
150 |
149
|
imp |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
151 |
150
|
com12 |
⊢ ( ( ( ( 𝑃 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝑃 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ∧ 𝑋 ∈ ℝ* ) ∧ ( ( 𝑃 ‘ 𝐼 ) < 𝑋 ∧ 𝑋 < ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) → ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
152 |
4 151
|
sylbi |
⊢ ( 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
153 |
|
ax-1 |
⊢ ( ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) → ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) ) |
154 |
152 153
|
pm2.61i |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑃 ‘ 𝐼 ) (,) ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) ) |